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ABSTRACT
Many-antenna base stations promise manyfold spectral ca-
pacity increases in theory. However, our recent experimen-
tal work has shown a significant performance gap between
the traditional MU-MIMO linear precoding method, zero-

forcing, and the method proposed for many-antenna base
stations, conjugate. Thus, a critical question in the field
of many-antenna base stations is: Under what scenarios,
if any, does conjugate precoding outperform zero-forcing in
real systems?
Towards answering this question, we leverage our expe-

rience in building many-antenna base stations to derive a
model for the performance of linear precoders in real-world
systems. We isolate the primary factors which discrepantly
affect these linear precoders, then capture their complex in-
teractions in an analytical model. By combining our real-
world capacity results with this analytical model, we find
new insight in to the tradeoffs between conjugate and zero-
forcing precoding. Our results suggest that conjugate will
outperform zero-forcing when there are many simultaneous
users, the users have high mobility, or the implementation
employs less-capable hardware. We find that our model is
not only useful for guiding the hardware design of base sta-
tions, but can also facilitate dynamically switching to the op-
timal linear precoding algorithm in realtime, through adap-

tive precoding.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

Keywords
Large-scale Antenna Systems (LSAS), Many-Antenna, Mas-
sive MIMO, Multi-User MIMO, Beamforming, Linear Pre-
coding, Conjugate, Zero-forcing

1. INTRODUCTION
Recent work has proposed using many-antenna base sta-

tions to vastly improve spectral capacity in cellular networks
by serving tens of users simultaneously. However, traditional
linear precoding techniques do not scale up well with the
number of antennas. For example, the predominant multi-
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user multiple input multiple output (MU-MIMO) linear pre-
coding technique, zero-forcing, leverages a pseudo-inverse of
the channel matrix to nullify interference within multiple
spatial streams; this requires centralized processing, utilizes
non-parallelizable algorithms, and has polynomial complex-
ity with regard to both the number of base station antennas
and users served. Thus, to overcome this scalability chal-
lenge, recent theoretical work proposed applying the sim-
plest form of linear precoding, conjugate beamforming, to
many-antenna base stations, and showed that as the num-
ber base station antennas increases it approaches optimal [1].
A modified form of conjugate beamforming can not only be
fully distributed and parallelized, but also has linear com-
plexity with the number of base station antennas [2].

Unfortunately, our recent experimental work has shown
that even with a substantial number of base station anten-
nas that conjugate performs significantly worse than zero-
forcing. For example, it only achieves 45% capacity with 64
base station antennas [2]. However these results only indi-
cate the channel capacity after the channel state informa-
tion (CSI) has been collected and the required computation
completed, thus it neglects the computational overhead and
the realtime requirements of a practical system. This leads
us to an important question in the field of many-antenna
base stations: Under what scenarios, if any, does conjugate
precoding outperform zero-forcing in real systems?

Towards answering this question, we draw on our experi-
ence in building many-antenna base stations to isolate the
key practical factors which affect the performance of a real-
world system. At a high level these factors can be classified
in to two categories: environmental and design. The en-
vironmental factors include channel coherence and precoder

spectral efficiency. These factors are completely independent
of the base station implementation, and can be measured for
a given location. The design factors include number of an-

tennas and hardware capability.
These factors exhibit complex and nuanced interaction in

practice. We derive an analytical model that captures this
behavior to predict the achieved spectral capacity of lin-
ear precoding techniques in realtime systems. Using results
from our implementation of a many-antenna base station,
we leverage this model to identify and investigate the trade-
off points at which conjugate can outperform zero-forcing.
We find that in a low-end, cost-effective, base station con-
jugate outperforms zero-forcing at coherence times of up to
38 ms, when serving a modest 15 users. However, this coher-
ence tradeoff point is reduced substantially as the number of
users decreases or the capability of the hardware increases.

By utilizing our performance model, base station design-
ers can optimize their cost vs. performance tradeoffs and
tailor their design to fit specific deployments. Furthermore,



since channel coherence and the number of users can vary
substantially in real-world deployments, our results suggest
that it will be advantageous for base stations to dynamically
switch between precoding techniques to optimize capacity,
which we call adaptive precoding.
The rest of this paper is organized as follows: We provide

a brief background in Section 2. In Section 3 we discuss the
factors which affect performance, then use them to build a
performance model in Section 4. We leverage this model
to predict tradeoff points between the precoding techniques,
which we present with other results in Section 5. In Sec-
tion 6 we discuss future work, followed by a brief overview
of related work in 7, then conclude in Section 8.

2. BACKGROUND
There are many forms of MU-MIMO; we focus on linear

precoding since other methods are computationally infeasi-
ble in practice, or do not take advantage of the potential
capacity gains from many-antenna systems. Let s denote
a K × 1 vector representing the data-bearing symbols to
K users. Linear precoding creates a downlink transmission
vector s′ for M antennas, by multiplying the original data
vector s by a M ×K matrix W: s′ = W · s. In the uplink
the data symbols from the K terminals can be recovered
similarly, by performing s = WT

· s′.
The beamforming weights, W, are computed according

to the precoding algorithm; in this work we analyze the
two predominant algorithms: conjugate and zero-forcing.
Conjugate uses beamforming weights which are the complex
conjugate of the channel matrix, H, Wconj = cH∗, where
H∗, which maximizes the SNR to each user, regardless of
interference. Zero-forcing calculates the beamweights as a

pseudo-inverse of the channel matrix,Wzf = cH∗
(

HTH∗
)

−1
,

which forces inter-user interference to zero.
For more detailed background, we suggest [1, 2, 3].

3. PERFORMANCE FACTORS
The factors which affect the performance of base stations

employing linear precoding can be classified as either envi-
ronmental or by design. The propagation environment af-
fects the channel coherence and the precoder’s spectral effi-
ciency. The base station design determines the number base
station antennas, the number of users that can be served,
and the precoding algorithm’s latency. We next define each
factor and their effect on performance, identify how they
cause discrepant behavior in conjugate and zero-forcing pre-
coding, and characterize them in real-world systems.

3.1 Environmental Factors

3.1.1 Channel coherence
Channel coherence describes how “smooth” the physical

wireless channel is, in both time and frequency. Essentially,
it determines how often CSI must be collected. If the channel
changes too much over time, then the previously estimated
channel state becomes useless. The duration of this interval
is the coherence time. Similarly, one channel estimate is not
valid for the entire spectrum. Thus, the channel state must
be estimated at intervals across the entire wideband channel;
the width of this interval is the coherence bandwidth.
Coherence time is determined by user mobility. Theoreti-

cal models simulate coherence time as the amount of time it

takes the user or something in the path of the user to move
1/4 wavelength. For example, at a carrier frequency of 2.4
GHz (wavelength of 12.5 cm) a user moving at 140 mph has a
coherence time of 500 µs. However, this neglects movement
in the environment itself and experimental evaluation has
shown that vehicular mobility near users results in less than
300 µs coherence intervals in the 2.4 GHz band [4]. Previous
work based on LTE channel models often use approximately
1 ms coherence times [1].

Coherence bandwidth is the approximately flat frequency
interval of the channel. Delay spread in multipath environ-
ments causes the channel’s frequency response to become
“rough.” However, channels can still be approximated as
“smooth” over the coherence bandwidth, usually derived as
the inverse of the delay spread. This effectively requires the
channel to be estimated at regular intervals across the spec-
trum to obtain accurate CSI. In LTE models the coherence
bandwidth is 210 kHz, as described in further detail in [1].

Channel coherence determines the latency of CSI acquisi-
tion and how long that CSI is valid. Since the CSI is only
valid temporarily, the overhead of CSI collection and pre-
coding computation results in a direct loss of capacity. More
importantly, however, this overhead is fixed with respect to
channel coherence time. Thus, as channel coherence is re-
duced, the relative capacity loss grows. Since conjugate and
zero-forcing have drastically different computational over-
heads they behave differently as coherence time varies.

3.1.2 Precoder Spectral Efficiency
Zero-forcing and conjugate provide vastly different spec-

tral efficiencies during actual data transmissions [2]. We
define precoder spectral efficiency as the capacity achieved
(bps/hz) using M antennas to serve K users in a given en-
vironment neglecting all CSI and computational overhead.
Because these factors are neglected, precoder spectral effi-
ciency is independent of base station implementation (for a
given M and K).

This spectral efficiency is determined by the propagation
environment, specifically channel orthogonality, user distance,
noise, and interference. It is important to note that the rel-
ative spectral efficiency of conjugate and zero-forcing varies
significantly with SNR, as further explored in [5, 2]. How-
ever, zero-forcing is known to perform poorly in low SNR
regimes, so a slightly modified form, often referred to as
MMSE, should be used in these scenarios. MMSE has neg-
ligibly increased performance overhead when compared to
zero-forcing, but performs much better at low SNRs, as
shown nicely in [6]. While the relative performance to con-
jugate still varies with SNR, it is not as drastic.

One approach to approximate spectral efficiency is to mea-
sure each environmental property to create a channel model
and simulate precoder spectral efficiency. Alternatively, we
employ a more accurate approach that uses a many-antenna
base station to measure spectral efficiency directly, thus cap-
turing the combined effect of these properties on capacity.

3.2 Design Factors
3.2.1 Number of Antennas
The number antennas, both on the base station or with

each additional user, drastically affects the capacity in two
ways. While more antennas increase spectral efficiency, they
also increase CSI collection and precoding computation over-
head, decreasing the amount of time available to send data.



Typically, each additional base station antenna provides a
power gain (both by increasing the total transmit power and
improving directionality), as well as a potential multiplexing
gain (by increasing the possible number of users served si-
multaneously). However, when zero-forcing, each additional
antenna also increases the amount of data sent to the central
processor, increasing transport and processing overhead. In
contrast, conjugate can be distributed in a manner requiring
no additional overhead with more base station antennas.
Each additional user provides a multiplexing gain at the

expense of a data slot being converted to a pilot slot, and less
transmit power per user. However, in low coherence chan-
nels, it may be impossible to collect CSI for all available
users and still have time left to send data, thus limiting the
number of users that can be optimally served. Notably, the
complexity and relative performance of each precoder grow
at different rates with the number of base station antennas
and users. Since zero-forcing has polynomial unparalleliz-
able complexity, it suffers more as M and K increase. This
indicates that the optimal number of users to serve is de-
pendent on the precoding technique due to these differences
in computational overhead.

3.2.2 Hardware Capability
The base station’s hardware determines computation and

data transport latency. After CSI estimation, the base sta-
tion must perform the linear precoding computation before
data transmission. Any delay caused by this processing re-
sults in a direct capacity loss. All linear precoding tech-
niques require the same computation to apply the beam
weights. Additionally, even traditional baseband processing
for wideband systems, such as OFDM, can cause substantial
delay. However, since these overheads are common to both
zero-forcing and conjugate, we omit them from our analysis
as they do not provide additional insight in the performance
tradeoffs; they essentially have the effect of further shorten-
ing the coherence time.
While conjugate beamforming requires negligible compu-

tation beyond the basic linear precoder, zero-forcing has
polynomial time complexity with regard to the number of
base station antennas and users, and its matrix inverse oper-
ations have internal data dependencies which prevent them
from being fully parallelized. Additionally, zero-forcing has
a central data dependency: i.e., it requires CSI from each
base station antenna at a central location to compute the
beamforming weights, then these weights must be sent back
to each of the radios. When the base station has a large
number of radios serving many users across a large band-
width, this simple data transportation results in significant
overhead thereby decreasing the amount of usable coherence
time. Thus, the performance of zero-forcing is dependent on
the base station’s matrix inverse and data transport perfor-
mance, as well as channel bandwidth, as further described
below.
Matrix Inversion. Matrix inversions have internal data

dependencies which prevent full parallelization of the algo-
rithm. As the number of simultaneously served users in-
creases, the resulting inverse latency increase cannot be com-
pensated for with additional hardware.
Matrix inversion is an operation that is O(MK2) and thus

the incurred latency scales cubically with the number of con-
currently served users (since M ≥ K). Each of the compo-
nent operations are CORDIC rotations and divisions which

are orders of magnitude more time and resource intensive
than simple multiplications and additions (matrix multipli-
cation is also O(MK2) but far less complex and can be fully
parallelized).

Additionally, the inversion must be performed for each
coherence bandwidth interval across the entire wide band.
For example, a system similar to LTE with a 40 MHz band-
width and a coherence interval of 210 kHz requires 191 of
these inverses.

Examples of realtime performance for such a system are
dependent on the type of hardware employed. We consider
two realistic inversion engines. On the lower, cheaper end,
we consider a high performance desktop (Intel-i7, 4 core, us-
ing MKL/SSE) CPU and benchmark the matrix inversion
performance. Given that each inverse can be computed in
parallel, this system can perform 4 inverses at a time, thus,
such a system can perform 191 15x15 matrix inversions in
approximately 2500 µs. The best case method of performing
a matrix inverse is to use dedicated inversion hardware such
as an FPGA or ASIC. This method is far more expensive
to implement, but would be appropriate for use in a next
generation base station. We consider the FPGA complex
matrix inversion specified in [7] and compute the expected
inverse latency. For this ideal system, 191 15x15 inversions
can be computed in approximately 260 µs, almost an order
of magnitude less than the CPU method. Note that due to
the non-parallelizable nature of the inverse algorithm, this
overhead is not easily addressed by Moore’s law, as addi-
tional cores cannot reduce the latency of an inverse, which
grows with the number of users being served.

Data Transport Performance. Current data transport hard-
ware, such as Ethernet or InfiniBand, range in throughput
from 1 Gbps to over 40 Gbps. Along with inversion latency,
data transport latency significantly detracts from the per-
formance of zero-forcing transmissions due to the inherent,
centralized data dependency.

This requires each channel vector to be transported from
the radio, through a switch, to the central controller. Once
the inverse is computed, the beamforming weights must be
sent back to the radios. Thus this process requires two data
transmissions (CSI forward and weights backward), each
of which include the hop latency of traveling through the
switch, as well as propagation delay. The propagation delay
exceeds 5 µs per kilometer, given the reduced speed of light
in fiber optic cables. In general, the amount of data in both
directions is symmetric, as there is both a CSI estimate and
a beamweight required for each antenna on each coherence
bandwidth.

Gigabit Ethernet (GbE) can transport data at a rate of
1 Gbps to 40 Gbps and has an incurred hop latency of
approximately 20 µs [8]. Common Public Radio Interface
(CPRI), which has a similar performance to Ethernet, is
typically used for data transport in cellular systems, how-
ever it is specialized for sending continuous synchronized
I/Q samples, and would have to be altered to support this
application. For the round trip transportation of 191 15x15
matrices (with 32 bit complex values), a 10 GbE system in-
curs a latency of at least 355 µs. InfiniBand is a faster, more
expensive transportation system intended for supercomput-
ing clusters that is capable of 40 Gbps throughput with only
1 µs hop latencies [9]. For the round trip transportation of
191 15x15 matrices, this system incurs a latency of approx-
imately 70 µs.



Variable Description Unit

Ct Coherence time s
Cb Coherence bandwidth hz
θ Spectral efficiency per user bps/hz/u
K # users u
M # base station antennas
S Data transport throughput bps
L Data transport hop latency s
T-1 Time to perform an inverse s
Nb # bits per CSI bits
B Bandwidth hz

γ % of time transmitting data %
E Channel est. overhead s
P Total processing time s
Θ Achieved aggregate capacity bps/hz

Table 1: Parameters. Upper set are model inputs
categorized by environment and design. Lower set
are model variables.

Notably, the data being sent to each user must also be
distributed to all of the radios, however this is a common
requirement for all precoding techniques, would likely use a
separate data link, and is much less sensitive to latency.
Channel Bandwidth. Practical communication systems

use wide channel bandwidths in order to increase capacity.
Unfortunately, as mentioned above, the frequency response
of this channel is not flat, thus CSI estimation and pre-
coding computation has to be repeated at regular intervals
across the band. Thus, the number of inverses and amount
of data transport required scale linearly with the bandwidth.
In current LTE standards the largest channel bandwidth is
40 MHz (20 MHz downlink and 20 MHz uplink, in FDD),
whereas the next generation of WiFi, 802.11ac, goes up to
160 MHz bandwidths (two bonded 80 MHz bands).

4. PERFORMANCE MODEL
Using the factors discussed in the previous section, we now

present the model which dictates the real-world performance
of these linear precoding techniques. These factors exhibit
complex interactions in real-world systems; we use our model
to capture these interactions and analyze their impact on
practical performance.

4.1 Parameters
A list of model parameters, sorted by their category, envi-

ronment or design, is shown in Table 1. If a value is specific
to a precoding technique it is denoted with a ZF or C for
zero-forcing and conjugate, respectively.

4.2 Model Derivation
The goal of this model is to find the real-world achieved

capacity of a linear precoding system when given the chan-
nel coherence, number of base station antennas, number of
users, hardware capability, precoder spectral capacity, and
bandwidth. At a high level, the system capacity, Θ, can
be shown in terms of θ, which is determined by the environ-
mental factors, and γ, which is a result of the design factors:

Θ = θ · γ ·K (1)

This equation describes simultaneous data transmission to
K users at a rate of θ bps/hz each, however due to the over-
head of channel estimation (E) and processing (P ), we can
actually only transmit γ percent of each coherence time (Ct),

where:

γ =
Ct − E − P

Ct

(2)

For each user, it takes 1/Cb time to collect accurate channel
information for the whole spectrum (since each spectrum
block can be measured in parallel), thus:

E =
K

Cb

(3)

Since conjugate does not require central processing, it has
no processing overhead, so PC = 0. However, due to central-
ized processing requirements of zero-forcing, it must spend
a large amount of time in data transport and computing
inverses, and thus has a substantial additional overhead:

PZF = 2 ·

(

M ·K ·
B
Cb

·Nb

S
+ L

)

+
B

Cb

· T-1 (4)

The first part of the equation accounts for the time it takes
to send the B/Cb channel vectors, each with K entries that
have Nb bits from the M antennas to the central processor
over a connection with a speed of S and hop latency of L
(which includes propagation delay due to cable length). This
is doubled, since the central processor then has to send the
beamweights back to each of the M radios. If the size of the
beamweights and CSI differ, due to the use of codebooks,
compression, or quantization, the forward and reverse links
can be trivially separated to account for this asymmetry.
The second component accounts for the amount of time it
takes to perform the K × K inverses for each of the B/Cb

coherence bandwidths.

4.3 Complete Model
Combining all of the factors we see that the modeled

throughput for conjugate is:

ΘC =
Ct −

K
Cb

Ct

· θC ·K (5)

And for zero-forcing is:

ΘZF =

Ct−
K

Cb
−



2·





M·K·
B

Cb
·Nb

S
+L



+ B

Cb
·T-1





Ct
· θZF ·K (6)

5. SIMULATION
Leveraging our model we analyze the performance of prac-

tical many-antenna linear precoding under realistic constraints.
We focus on scenarios where the performance of conjugate
and zero-forcing cross, as they highlight the conditions when
it is important to consider the tradeoffs between the two pre-
coding techniques.

5.1 Simulation Methodology
Using the performance model described in Section 4, we

input a range of realistic parameter values and analyze their
impact on performance. As defined in Table 1, there are
11 input parameters to the model; in order to reduce the
dimensionality in the presented results, we hold Cb, M , Nb,
and B constant, as they yield the least interesting impacts
on performance. For all experiments we base the coherence
bandwidth, Cb, and channel width, B, on LTE, which defines
Cb = 210 kHz and B = 40 MHz (20 MHz uplink and 20 MHz
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Type S L Inv. Type Sym.

Super InfiniBand 40 Gbps 1 µs FPGA  

Cluster 4x10GbE 40 Gbps 20 µs 8xIntel i7 �

High 2x10GbE 20 Gbps 20 µs 4xIntel i7 �

Mid 10GbE 10 Gbps 20 µs 2xIntel i7 ⋆

Low GbE 1 Gbps 20 µs Intel i7 N

Figure 1: Zero-forcing and conjugate performance
comparison for different hardware configurations in
a M=64, K=15 system.

downlink). Our platform supports up to 64 base station
antennas, so M = 64. We choose the number of bits in
channel estimates and beamweights to be 32 (16 real and 16
imaginary), as this offers low quantization error, and is the
width used by our implementation.
We then vary the remaining 7 parameters as follows: We

look at channel coherence times, Ct, that range from 500 µs
to 100 ms, which are reasonable for real-world mobility, and
in-line with the LTE parameters. Using the many-antenna
base station implementation described in [2] we collect the
real-world spectral efficiency, θ, achieved by conjugate and
zero-forcing precoding as the number of users, K, varies from
1 to 15. In order to assess the impact of hardware capabil-
ity, S, D, L, and T-1, on capacity, we devise four base sta-
tions which range from low-end hardware using Ethernet to
high-end custom FPGA designs using InfiniBand; the spec-
ifications are provided in Figure 1 [8, 9]. We assume that
processing is local, and thus propagation delay is negligible.

5.2 Results
The main factors which affect the performance tradeoffs

between conjugate and zero-forcing are coherence time, hard-
ware capability, and number of users. We design simulations
which analyze each of these factors, and clearly show their
impact on the tradeoff between conjugate and zero-forcing.

5.2.1 Coherence Time and Hardware Capability
We first look at the achieved capacity of conjugate and

zero-forcing with regard to coherence time. Figure 1 shows
that while serving 15 users simultaneously, conjugate beam-
forming outperforms zero-forcing at coherence times up to
38 ms in the low-end base station. We clearly see that as
the coherence time drops, the overhead of zero-forcing dom-
inates its capacity.
However, we can also see in Figure 1, that given the

specialized “super” high performance central processor and
switch we can reduce this tradeoff point to below 1.5 ms.
Even using very high-end servers, it is still very difficult to
reduce the tradeoff point to below 5 ms.
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Figure 2: Zero-forcing and conjugate performance
comparison for number of terminals and fixed co-
herence time of 30 ms with low-end hardware.

5.2.2 Number of Users
Finally, we note that as the number of users grows, the

performance of zero-forcing quickly degrades under the con-
straint of low coherence times, as the overhead from data-
transport and processing dominate its capacity. Figure 2
demonstrates a scenario where conjugate begins to outper-
form zero-forcing with more users; with 4-6 users their per-
formance is equivalent, but as the number of users grows to
15, zero-forcing achieves only 65% the capacity of conjugate.
This also demonstrates the criticality of choosing the opti-
mal number of users to serve, as the capacity of zero-forcing
peaks at 11 users under these constraints. We use the low-
end hardware to demonstrate these effects, however higher-
end hardware will also show this behavior as the number of
users increases; our models show that γ · K (an indicator
of peak capacity), under the same 30 ms coherence and 64
base station scenario, is maximal at 49 users, 73 users, 83
users, and 101 users, for the mid, high, cluster, and super
hardware configurations, respectively.

5.3 Implications
These results indicate that our model can play two im-

portant roles in the development of many-antenna base sta-
tions: (i) guiding base station design and (ii) enabling adap-
tive precoding. We find that conjugate beamforming will
be better suited for high frequency bands where coherence
is lower and antenna arrays have much smaller form fac-
tors, whereas zero-forcing will be more appropriate at lower
frequencies with fewer antennas. The actual tradeoff fre-
quencies between these regimes will be a function of user
mobility and hardware implementation, and in the tradeoff
region adaptive precoding will be useful.

Base station design. Using our model, base station archi-
tects can appropriately provision their design to meet real-
world performance requirements. By measuring the environ-
mental factors, they can determine the design constraints
they need to meet in order to achieve their performance
goals. This can help them avoid costly mistakes, such as
investing in a zero-forcing system for an environment with
very short coherence time.

Adaptive Precoding. The optimal precoding technique varies
according to factors which change in realtime, such as the
number of users or channel coherence. Thus, for deploy-



ments that encompass the tradeoff points highlighted by
our results, it will be advantageous to dynamically switch
between conjugate and zero-forcing through adaptive pre-
coding. Since users exhibit widely varying mobility, their
coherence time may drop below the threshold where zero-
forcing is optimal, and thus the system should dynamically
switch to conjugate. Notably, users can be scheduled in
groups based on mobility, and thus the precoding can not
only be adaptive across time and frequency, but user group-
ing as well.

6. DISCUSSION AND FUTURE WORK
It is typically very difficult to capture the behavior and

performance of complex real-world systems using an analyt-
ical model. Our approach addresses this issue by separating
the erratic and complex behavior of the environment from
the deterministic overhead imposed by the hardware de-
sign. This enables system architects to identify and address
critical high-level design factors which affect performance
from a hardware design perspective then leverage empirical
measurements of the environmental factors from the target
topology to estimate real-world performance.
Clearly every system design has much more complex in-

ternal interactions, such as multiple levels of hardware, soft-
ware, and data interconnects, which determine the actual
overhead of the high-level factors. These design details can
easily be incorporated in to the model. As we develop our
own realtime adaptive precoding system we are iteratively
refining this abstract model to incorporate concrete imple-
mentation details specific to our design. Additionally, as we
collect more experimental data from various propagation en-
vironments, with more simultaneous users, we will further
hone the accuracy and applicability of the model.
We also note that the simulation results presented are a

very conservative estimate of the real-world tradeoff points;
the parameters chosen are reasonable estimates intended to
demonstrate the behavior and trends of the model. Many of
the common overheads, such as cyclic prefix, synchroniza-
tion, control, etc., are omitted from the analysis, and have
essentially the same effect as reducing the coherence time.
Furthermore, many of the overhead estimates represent ide-
alized, lower-bound, overhead rather than values expected
in a full implementation, e.g., data-transport, computation,
and CSI collection. However, these values are design and
environment specific, and should be determined on a per-
system basis, then incorporated in to the model accordingly.

7. RELATED WORK
While there is plethora of theoretical work on many-antenna

base stations, due to the recent nature of this area, to the
best of our knowledge, only one explores the tradeoffs be-
tween linear precoding techniques. In [5], Yang et al. ana-
lyze the radiated power and computational requirements of
conjugate and zero-forcing linear precoders. However, when
determining the performance of the precoders, the authors
do not account for the time it takes to perform these ad-
ditional computations, nor do they consider other practical
implementation issues, such the data transport overhead or
the non-parallelizable nature of inverses. Their simulations
assume a channel coherence time of 933 µs, which, as we
have shown, can cause serious performance degradation in
zero-forcing. While this work is very insightful from a the-

oretical perspective, particularly with regard to energy and
spectral efficiency, it neglects the practical implementation
challenges facing many-antenna precoding, which drastically
affect real-world performance.

8. CONCLUDING REMARKS
Many-antenna base stations show enormous potential in

multiplying the spectral capacity of wireless systems. How-
ever it is imperative to discover and understand at the real-
world factors which affect their performance in order de-
sign systems which achieve their potential capacity gain.
We have analyzed and described the critical system fac-
tors which discrepantly affect the performance of the two
predominant linear precoders envisioned for many-antenna
beamforming. Contrary to some existing theoretical theo-
retical analysis, our results indicates that conjugate beam-
forming likely outperforms zero-forcing in many realistic sce-
narios. Our robust model can not only be used to help guide
system design and provisioning, but also indicates that base
stations can greatly benefit from adaptive precoding, en-
abling them to dynamically switch to the optimal precoding
technique as the users and environment vary.
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