678 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Seamless TCP Migration on
Smartphones without Network Support

Ahmad Rahmati, Member, IEEE, Clayton Shepard, Student Member, IEEE,
Chad C. Tossell, Lin Zhong, Member, IEEE, Philip Kortum,
Angela Nicoara, Member, IEEE, and Jatinder Singh, Member, IEEE

Abstract—Is it possible to migrate TCP/IP flows between different networks on modern mobile devices without infrastructure support
or protocol changes? To answer this question, we make three research contributions: 1) We report a comprehensive characterization
of IP traffic on 27 iPhone 3GS users for three months. 2) Driven by these findings, we devise two simple, effective, and easily
deployable system mechanisms to support seamless flow migration without network support, and extensively evaluate their
effectiveness using our field collected traces of real-life usage. Wait-n-Migrate leverages the fact that most flows are short lived. It
establishes new flows on newly available networks but allows preexisting flows on the old network to terminate naturally. Resumption
Agent takes advantage of the resumption functionality of modern protocols to securely resume flows without application intervention.
Combined, they provide an unprecedented opportunity to immediately deploy policies that leverage multiple networks to improve the
performance, efficiency, and connectivity of mobile devices. 3) We report an iPhone-based implementation of these system
mechanisms and demonstrate their overhead to be negligible. Furthermore, we employ a sample switching policy, AutoSwitch, to
demonstrate their performance. Through traces and field measurements, we show that AutoSwitch reduces user disruptions by an

order of magnitude.

Index Terms—Mobile computing, network architecture and design, user/machine systems

1 INTRODUCTION

ODERN mobile devices have access to multiple net-
works. Not only do they have multiple network
interfaces, such as cellular and Wi-Fi, but also a single
interface may access multiple networks, such as Wi-Fi
hotspots from different providers. Over time, the networks
available to a mobile device and their qualities vary greatly,
for example, as the user moves. A large body of recent work
attests to the value of properly switching between networks
[1], [2] or aggregating them [3], [4], [5]. Switching between
networks can significantly improve the performance [6], [7],
energy efficiency [1], [8], and connectivity [9] of mobile
Internet. In this work, we focus not on policies, i.e.,
determining when to switch, but mechanisms to enable
switching and/or aggregating networks on smartphones.
The key to switching between networks or aggregating
them is to change the network for existing flows without
disrupting their corresponding applications. Brute-force

e A. Rahmati is with Broadcom Corporation, 190 Mathilda Pl., Sunnyvale,
CA 94086. E-mail: ahmad@rahmati.com.

o C. Shepard, L. Zhong, and P. Kortum are with Rice University, Houston,
TX 77005. E-mail: {cws, Izhong, pkortum|@rice.edu.

o C.C. Tossell is with the USAF Research Laboratory, Wright-Patterson Air
Force Base, 2620 Q Street, Bldg. 852, OH 45433.
E-mail: chadtossell@yahoo.com.

e A. Nicoara is with the Deutsche Telekom Silicon Valley Innovation Center,
295 N. Bernardo Ave., Suite 200, Mountain View, CA 94043.
E-mail: angela.nicoara@telekom.com.

e |. Singh is with Stanford University, 215 Packard Building, 350 Serra
Mall, Stanford, CA 94305. E-mail: jatinder@stanford.edu.

Manuscript received 17 June 2011; revised 25 Jan. 2012; accepted 27 Dec.
2012; published online 10 Jan. 2013.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-06-0324.
Digital Object Identifier no. 10.1109/TMC.2013.8.

1536-1233/14/$31.00 © 2014 IEEE

switching between networks, where one network is simply
disabled and another enabled, may lead to undesirable
disruptions, as our own experience corroborates and as
confirmed by our user study. Solutions to this problem are
available in the name of handoff. Some require infrastructure
or home agent support, for example, cellular handoff,
connection gateway, and Mobile IP, which incur extra
operating expenses and additional latency, hampering
adoption and reducing the performance of both interactive
[10] and noninteractive [11] applications. Others require
changing the TCP/IP protocol, which has been shown to
be practically very difficult. Not surprisingly, no automatic
switching or aggregating solutions have been widely
deployed in practice.

The important question this paper addresses is the
following: On modern mobile devices, is it possible to
seamlessly migrate TCP/IP flows between different net-
works without changes to preexisting applications, infra-
structure, and protocols? Toward answering this question,
this paper presents three research contributions.

First, we report a comprehensive characterization of
network traffic on smartphones using three-month traces
collected from 27 iPhone 3GS users. The characterization
provides key insights into the motivation and rationale of
our mechanisms. In particular, we have found that network
flows are typically short-lived and utilize standard proto-
cols, long-lived flows are often predictable and automati-
cally reconnect upon disruption, and that there are few
concurrent flows during interactive usage.

Second, we present and extensively evaluate two novel
system mechanisms, implemented in a smartphone, with
the objective of migrating flows between networks without
network support and without disruption to the user. The

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT 679

first mechanism, Wait-n-Migrate, takes advantage of the fact
that TCP flows are short lived. It establishes new flows on
the new network, but waits for the preexisting flows on the
old network to terminate normally, up to a specific wait-
time set by the migration policy. The wait-time determines
the tradeoff between faster switching and fewer dropped
flows. The second mechanism, Resumption Agent, leverages
the resume function in modern servers and resumes a flow
from wherever it was disrupted, in a manner transparent to
applications and with negligible overhead. Resumption
Agent provides automatic resuming capabilities to all
preexisting applications, in an application agnostic manner.
Based on our traces, we show that Wait-n-Migrate can
successfully migrate 90 and 95 percent of web flows without
interruption, for wait-times of 10 and 100 seconds, respec-
tively. With the addition of Resumption Agent, we show
that for web flows that support resuming, we can virtually
eliminate disruptions when switching between networks.

Third, we report an efficient implementation of the
Wait-n-Migrate and Resumption Agent mechanisms on the
iPhone platform, and show that their overhead is
negligible. Based on the two system mechanisms, we
further implement a sample network interface switching
policy, AutoSwitch. AutoSwitch uses Wait-n-Migrate and
Resumption Agent to offload data from cellular to Wi-Fi as
much as possible, with minimum disruptions to the user.
AutoSwitch using Wait-n-Migrate alone achieves over one
order of magnitude reduction in the number of disruptions
in our real-life traces, and from over 40 percent to well
under 10 percent for 100 KB transfers while driving.
Furthermore, when the content supports resuming, dis-
ruptions are almost entirely eliminated with the addition
of Resumption Agent.

The rest of this paper is organized as follows: In Section 2,
we present a motivational user study to show that brute-
force network switching is unacceptable to users, and then
discuss related work. In Section 3, we present the
characterization of network traffic on 27 iPhone 3GS users
and provide insight to the characteristics of network flows
on modern smartphones. Based on these findings, in
Section 4, we present the design and trace-based evaluation
of Wait-n-Migrate and Resumption Agent. In Section 5, we
report their implementation on iPhone and evaluate their
performance impact. In Section 6, we present an example
application, AutoSwitch, of the resulting seamless flow
migration without network support. Finally, we discuss
methods to further enhance our mechanisms for increased
performance in Section 7, and conclude in Section 8.

2 BACKGROUND

2.1 Consequences of Brute-Force Switching

Without network support, smartphones switch between
networks (e.g., cellular and Wi-Fi) in a brute-force manner:
They terminate all flows on the old network and enable the
new network. This behavior is shared across all the three
major smartphone platforms we studied: iOS, Android, and
Windows Mobile." It is then up to the application, or often

1. The only exception was iOS and only when switching from cellular to
Wi-Fi, where it keeps existing connections indefinitely on their original
interface.

the user, to detect the disruption and retry over the new
network. This brute-force switch introduces disruptions to
interactive sessions. According to our personal experience,
network disruption is noticeably annoying, and particularly
prevalent for large webpages or during poor connectivity.
To better understand the usability impact of network
disruption (e.g., as will be experienced due to brute-force
switching), we performed a formal user study with 10
participants from the Rice student community who already
used Internet-ready smartphones. The study had equal
males and females, and four participants with none-
ngineering backgrounds.

Our study consisted of two parts. The first part asked the
users to open a copy of a regular news website cached on
our server for consistency. We then asked users to perform
a number of text identification tasks on three individual
pages. The participants were later directed to a cached copy
of a mobile news search engine, where they were asked to
identify several stories and their sources. During the study,
our server automatically disrupted the data flow for the first
load of three of the five page loads. The users had to refresh
their browser to completely load each page. This simulated
the impact of a brute-force migration. Participants were free
to either use their own phones or our iPhone for the
purpose of this study.

For the second part, we interviewed the participants to
assess their browsing experience, including several ques-
tions on a 1-5 Likert scale (agree-disagree), and several
open-ended questions. All 10 participants agreed or some-
what agreed that disruptions are an annoying experience.
Interestingly, all 10 also agreed or somewhat agreed that
they have had similar experiences prior, and that they typically
refresh a page that has failed to completely load.

While the participants” prior network disruption experi-
ences are typically due to bad connectivity, brute-force
network switching will cause similarly unwanted and
annoying disruptions.

During the open-ended question sessions, when asked
whether they have experienced this phenomenon more
often in specific websites, nine of 10 mentioned that they
experience it more frequently with larger transfers, for
example, mentioning pages that are as “heavier” or “with
lots of graphics.” When asked whether they have experi-
enced this phenomenon more often in specific conditions,
eight of 10 correctly identified that they experience it more
frequently during one or more network conditions (e.g., low
signal, moving). We can see that even without intentional
network switching, users are subject to unwanted and
annoying network disruptions. This further motivates our
AutoSwitch policy, as presented in Section 6.

While our user study was conducted with a small
number of participants (n = 10), considering the high
confidence intervals, our findings are expected to be true
with the majority of user populations similar to our
participants. For example, the 90 percent Agresti-Coull
confidence interval [12] for eight and 10 positive answers
out of 10 are (0.52, 0.91) and (0.66, 1), respectively, i.e., there
is a 90 percent chance that the statistics for the population
falls in those intervals.

In summary, we confirmed that network disruptions
annoy users. We also found that typical users have

680 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

extensive experience with network disruptions, and have
even figured out the conditions in which they often occur. A
successful solution to for network disruptions must not
blatantly change the user experience or discard the partially
received content. These findings motivate and assist both
the design of our mechanisms and our example application,
AutoSwitch.

2.2 Related Work

TCP/IP traditionally lacks built-in support for switching
between multiple networks (handoff) or aggregating their
throughput (multihoming). Therefore, there exists a body of
research on providing session continuity [13] between
different networks, i.e., maintaining the same IP address
while moving between networks. Current solutions for
session continuity fall into three categories. First is to have
one network as the slave to a master network, where all
traffic is directed through the latter [14], as in Virtual AP.
However, this requires unified management of the net-
works, increases traffic on the master network, and
increases latency. The second category of solutions utilize
a mobility gateway in the infrastructure [15], [16], to act as a
proxy between a mobile device and the Internet. For
example, such gateways have been employed for switching
between interfaces (Wiffler [6]), for multihoming [3], [4],
[17], and for striping [5], [15], [18], [19], [20], [21], [22], [23],
[24]. However, routing all flows through a fixed gateway
can increase the connection latency. The third category of
solutions modify or extend the TCP/IP protocol support for
mobility, for example, by adding explicit support, as in [25],
[26], or through Mobile IP [27], [28], [29], where a home
router or agent handles mobility and packet forwarding.
However, the extra forwarding increases the traffic on the
home agent and more importantly, the extra distance
traveled by packets increases the connection latency, which
is known to be a major bottleneck for mobile Internet
performance [10], [11]. Mobile IPv6 eliminates the need for
a specific foreign agent, but in return requires individual
mobile nodes to perform the forwarding operations, with
similar drawbacks.

While all three categories of solutions discussed above
are designed to successfully migrate all network flows for
every network switch, they require additional infrastructure
or network support in addition to device modifications, and
thus are not immediately deployable. Those that have
begun deployment suffer from limited or unsuccessful
adoption. Furthermore, solutions that depend on a for-
warding gateway or Mobile IP increase network latency.
Latency is known to be a major bottleneck in mobile
Internet performance, for both interactive applications [10]
and noninteractive (browser) applications [11].

In contrast to these existing techniques, our mechanisms
require no changes to applications, infrastructure, or net-
work protocols, and induce no additional connection
latency. Consequently, our mechanisms allow the immedi-
ate deployment of system policies that leverage multiple
networks. The tradeoff of our mechanisms is that a small
fraction of network flows are abruptly terminated. How-
ever, we show that this small fraction of terminated flows is
less than the number of flows that are terminated due to

regular phone usage in changing network conditions, for
example, when moving.

The practical value and applicability of this work is
further highlighted by recent work using our mechanisms.
One such example is MultiNets [30], which utilizes our
Wait-and-Migrate mechanism to switch between cellular
and Wi-Fi networks, to save energy, offload data from
cellular networks, and/or improve performance.

There are two solutions related to Resumption Agent.
Resuming static content is typically supported by down-
load managers such as wget. Yet, most other applications
(e.g., browsers) lack resume functionality. In contrast,
Resumption Agent is an application agnostic solution that
provides automatic resuming capabilities to all preexisting
applications. Snoeren et al. [31] supported resumption
through a client agent for the purpose of failover between
replica servers, while keeping servers largely unchanged.
However, Resumption Agent does require replica servers,
and is compatible with most existing servers, while
handling the challenges of dynamic content and secure
HTTPS connections.

Recently Alperovich and Noble [32] have proposed to
improve Wi-Fi performance for PC clients by switching and
balancing connections between multiple Wi-Fi access points
(APs), for example, as enabled through Virtual Wi-Fi [33].
They also retain preexisting connections on their original
AP, while assigning new connections to new APs. Yet, our
work focuses not on load balancing, but evaluates mechan-
isms for switching between heterogeneous networks on
smartphones. We go beyond retaining preexisting connec-
tions by addressing long-lived flows and supporting
preexisting applications on mobile phones.

There has also been several studies addressing smart-
phone usage and network traffic characteristics [34], [35].
Our contribution in traffic characterization complements
these works. In addition, using our traces, we are able to
evaluate the efficacy of our proposed mechanisms for
network migration by providing detailed analysis of traffic
protocols, flow length and concurrency, and the active
application concurrent to the flows.

Finally, we note that we have previously presented the
initial ideas along with partial results as a MobiCom 2010
poster [36], and later in a more complete manner as a Rice
University Technical Report [37].

3 NETWORK FLoOw CHARACTERIZATION

A thorough understanding of the characteristics of network
flows on modern mobile devices is critical to the seamless
migration of flows. We next report a first-of-its-kind study
based on detailed network flow traces from 27 iPhone 3GS
users. The characterization provides key insights for our
design, as described in Section 4.

3.1 iPhone Field Trace Collection

We gathered real-life network traces from 27 iPhone 3GS
users over the course of three months by installing logging
software we developed, called LiveLab [38]. The phones
were running the iOS 3.x operating system throughout the
study, the latest version available at the beginning of the
study. We chose the iPhone 3GS because at the beginning of

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT 681

Fraction of UDP packets

Dropbox

= NetBios

Skype
B SSDP

H Other

non-interactive

interactive

other & other

| http W http
https https
email ¥ email

M |ocal o |ocal

Fig. 1. Fraction of packets according to application for UDP packets (Left). Fraction of TCP flows for each application type (Center: noninteractive

sessions. Right: interactive sessions, i.e., phone display was on).

the study, it represented the cutting edge of smartphone
design, accounting for 55 percent of all mobile internet
traffic in the US as of October 2009 [39]. Additionally,
iPhone users have access to the largest number of third-
party applications, with over 300,000 officially released
apps as of October, 2010.

Whenever the phone’s CPU is not asleep, LiveLab
records TCP network connection statistics every 2 seconds
by running the netstat tool. Its output is similar to the same
tool available on Windows and Linux/Unix platforms.
Moreover, LiveLab records the application being used and
the display status in real time, and Wi-Fi signal strength
for the currently connected AP and all visible APs every
2 seconds and 15 minutes, respectively. Finally, it recorded
the complete packet headers for three of the participants
over one month, to gauge the data flow over UDP. We
refrained from deploying this packet-level logging for
longer time or more users due to its overhead. The data
are recorded on the phones, and is transferred nightly to
our servers in a secure fashion.

While our participants were not recruited to accurately
represent the vast mobile user population, the collected
data provide an unprecedentedly detailed look into the
connectivity on contemporary mobile devices.

3.2 Focus on TCP Flows

The packet-level logging data show that out of the three
common IP protocols in use TCP, UDP, and ICMP. ICMP
packets are typically not used by interactive applications,
but by devices for diagnostics, device discovery, and error
messages specific to each network. Therefore, for the
purpose of switching between networks, they can be safely
ignored. TCP and UDP account for 93 and 7 percent of all
remaining packets, respectively. TCP flows present the
main challenge toward flow migration. While we will
examine TCP flows in detail later, we first discuss UDP
flows. We analyze the UDP flows based on port numbers,
and further corroborate this analysis with the applications
currently being used. We have found the following services
and applications utilize UDP on the phones (Fig. 1):

e Skype (92 percent) uses UDP ports 12340 and 20515.

e Dropbox (4 percent) uses UDP broadcast on port
17500.

e Simple Service Discovery Protocol (SSDP) (2 percent)
is used to advertise and discover network services.

e NetBIOS (1 percent) for local area network device
discovery and networking.

e Other (<1 percent) such as NAT Port Mapping.

With the exception of Skype, all of these are network and
discovery services and specific to a particular network.

Therefore, we will ignore them for the purpose of switching
between networks, similar to ICMP traffic.

For Skype, we have found that as long as the primary
interface in the system routing table is correctly updated,
for example, as is the case with our mechanisms or when
the user manually enables or disables Wi-Fi, Skype switches
to the new network for both its TCP and UDP connections,
without dropping a call and with only a very short period
(~1 sec or less) of muting in the audio. However, if the
system is unaware of the disruption (e.g., moving out of Wi-
Fi coverage), Skype will drop the call. This highlights the
importance of a systemwide notification of a network
change, instead of simply losing connectivity, for the benefit
of applications that can handle disruptions gracefully.
AutoSwitch, described later in Section 6, achieves this
through updating the routing table.

Therefore, for the remainder of this paper, we will focus
on TCP flows. Using the port number of the server, we
divide external TCP flows into three categories:

e Web (HTTP: 80, HTTPS: 443). These are used not only
by the browser, but also by a number of native
applications that utilize web services or a built-in
browser.

o E-mail (IMAP: 143, 993, POP3: 110, 995, SMTP: 25,
465). These are used by the native e-mail client, and
will not include e-mail accessed through the browser.

e Other. All other applications and services.

Fig. 1 shows the fraction of TCP flows utilized for each
application during both interactive and noninteractive
usage. We use the display status (on) as an indicator of
the phone is being used interactively. We can see that more
than three quarters of TCP streams are web flows, high-
lighting the importance of handling them properly. We also
separate and ignore local (loopback) flows that reside only
on the phone.

Figs. 2 and 3 show the probability density function (PDF)
of the number of flows and the cumulative distribution
function (CDF) of flow lifetimes, respectively, according to
TCP port for both interactive and noninteractive sessions
whenever the phone’s CPU was running. We can see that
flows have similar characteristics during interactive and
noninteractive usage, yet, on average, flows during inter-
active usage have slightly shorter lifetimes. In the following
sections, we will study them in further detail, according to
application use.

3.3 Flow Concurrency

While analyzing the LiveLab data, we were surprised to
discover that there are few concurrent flows on the iPhone
platform, with negligible difference between interactive and

682
100%
80% A all
2 other
60% = = = = http
https
email

40%

local

20%

0%

0 1 2 3 4 5 6

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

100%
\ —all
80% - A other
60% 1) T
“ ttps
240% \ email
P local
20% http or https
0% 'A‘“—\)_\F"TH 1 |

0 1 2 3 4 5 6

Fig. 2. We observed few concurrent TCP flows (median = 2), and noninteractive and interactive usage were similar. PDF of the number of
concurrent TCP flows for different TCP ports, average among all users. (Left: noninteractive sessions. Right: interactive sessions.)

100%
80% -
60% -
40% A
o all other
20% - — - - —http https
0% email local
(] T T T
1 10 100 1000 10000

100%
80% -
60% -
//
40%
o all other
20% - — - - —http https
0% email local
0 T T T
1 10 100 1000 10000

Fig. 3. Flows during interactive usage have slightly shorter lifetimes. CDF of TCP flow lifetimes in seconds, based on TCP port, average among all

users. (Left: noninteractive sessions. Right: interactive sessions.)

100% 100% 100%
e non-interactive e non-interactive
----------- all (interactive) —[\ON-interactive eeeeessesss all(interactive)
80% - - = = idle 80% 1 all (interactive) 80% A ‘\ - - = .idle
m— = = = other apps — = dle m— = = = other apps
60% A faiekook 60% - mail 60% A \ faieb‘ook
- safari safari
&-&‘ mail mail
40% pandora 40% N\ 20% 1 pandora
maps R maps
youtube youtube
20% A .\ skype 20% A ==X 20% skype
\\ e
0% A+ 0% ; — 0% — mmme——— : .
0 1 2 3 4 5 0 1 3 4 5 0 1 2 3 4 5

Fig. 4. PDF of the number of TCP flows on different port numbers when running different Internet applications, excluding the push service. Left: web

ports. Center: e-mail ports. Right: other ports.

noninteractive sessions. The median number of flows was 2.
However, there almost always exists one particular flow,
97 percent of the time that the phone is awake. We have
identified that flow as Apple’s push notification service, on port
5223. Fig. 4 shows the PDF of number of concurrent TCP
flows, excluding the Apple Push service, whenever the
phone’s CPU was running and for the port types presented
in Section 3.2 (web, e-mail, other). We identified the top
seven applications that require Internet access using the
data from our field study, which include Pandora (music
streaming) and Skype (instant messaging, voice over IP).
These applications account for over 95 percent of interactive
phone Internet use. Noninteractive usage, including when
the display was off, idle time, when the home screen was
displayed are presented separately. Other applications,
including those that do not require internet connectivity,
are clustered together as others. For e-mail and other ports,
we display only the applications that we have determined
to use those ports.

We can see that even when running internet enabled
applications, the phone is rarely engaged in multiple TCP
flows simultaneously. The small numbers of simultaneous

TCP flows shows that for web applications on mobile phones,
multihoming mechanisms (i.e., no-striping) are effective for at
most 20 percent of flows, as the other 80 percent of times when
a web flow exists, it is a single flow. However, we expect
more simultaneous flows as more applications and services
become available on mobile devices. The e-mail client,
while not typically data intensive, presents an exception, as
it regularly uses multiple flows.

3.4 Flow Lifetime

We have found that most interactive flows on the phone
were short lived, and it is often possible to automatically
predict the duration of flows based on application and port
numbers. We measure the flow lifetime without including
the connection/tear down phase (e.g., wait_fin). We note
that some flows may not terminate naturally, but instead
may be disconnected due to network signal issues (or, e.g.,
the user manually switching Wi-Fi off). We are unable to
accurately distinguish between a naturally terminated flow
and one that is terminated due to connectivity issues.
However, a flow that is disconnected due to connectivity
issues typically has a longer lifetime than it originally would,

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT 683
100% — 100% 1 100%
3 - e
..—,al"’/ "l’
80% 80% A 80% A
non-interactive
60% - : iad\lle(mteractlve] 60% A 60% -
other apps
facebook o | o
40% 1 safari 40% _—/ 40% = e non-interactive
ma'\ld = / — . non-interactive .all(imeractive)
20% A pmaan Sora 20% T J all (interactive) 20% 1 === 'd|:
youiube —— == ide — soiy:;apps
0% . . e 0% . — 0% . . .
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000

Fig. 5. CDF of TCP flow lifetimes (seconds) on different port numbers, based on active application. Left: web ports. Center: e-mail ports,

Right: other ports.

as disconnections are detected only after a preset time-out
has passed with no data transfer. Consequently, connection
issues result in a slight overpresentation of flow lifetimes,
but we believe the effect is negligible, as only small
proportion of flows is terminated due to connectivity issues.

Our logs show a wide variation in the lifetime of TCP
flows on the experimental phones, in particular between
interactive and noninteractive usage sessions. Fig. 5
shows, on average among our participants, the CDF of
TCP session lengths for different TCP ports and different
active applications.

Our first finding is that most flows are short lived. In fact,
50 and 44 percent of flows for noninteractive and interactive
sessions, respectively, are ~2 seconds or less. In turn, this
limits the effectiveness of power saving schemes which rely on
long-lived downloads, such as CatNap [40].

Our second finding is that it is possible to predict flow
lengths based on active application and port, ie., the
distribution of flow lifetimes varies significantly based on
TCP port, active application, and whether the phone is
being used interactively. For example, as shown in Fig. 5,
the fraction of short-lived e-mail flows (i.e., IMAP, SMTP,
POP3) is much lower: 30 and 20 percent for noninteractive
and interactive sessions, respectively. Similarly, the Apple
Push service is known to be long lived. On the other hand,
as shown in Fig. 5, TCP flows during web browser sessions
were shorter than average. We will later see how these
findings are important for our switching mechanisms.

3.4.1 Long-Lived Nonstandard TCP Flows

We next consider long-lived flows that use nonstandard
protocols, other than web, ftp, and e-mail. Such flows are
difficult, if not impossible, to migrate without network
support. However, a close examination reveals that such
flows usually do not require migration support at all.

First, long-lived TCP flows based on closed application
protocols are usually from background, noninteractive
applications. Therefore, while their disruption or brute-
force migration may, for example, slightly delay an update,
they will rarely be noticeable to users.

More importantly, the handful of applications that do
utilize long-lived nonstandard protocols already provide
support to migration in various forms because application
developers anticipate the possibility of disruptions of long-lived
flows. For example, applications such as Push notifications,
Twidroid, and many instant messaging applications are
designed to gracefully and automatically reestablish a

connection after being disconnected. Another example,
Pandora, a common Internet radio streaming application,
and the only one that appeared in our participants’ list of
top 25 applications, skips the unbuffered part of the current
song, i.e., at most suffer skipping part of a track.

3.5 Background Applications

While the iPhone 3GS we used in the study was the state-of-
the-art phone at its time, it lacked official support of
multitasking for third-party applications as of OS 3.x. Note
that background operation is supported for some native
applications, for example, the e-mail client. We note that
Android and the newly released iPhone iOS 4.0 allow
background applications, for example, Skype and Pandora,
to access data networks [41]. This, alongside the increasing
processing power and memory of phones, suggests an
increase in the usage of background capable applications
(e.g., instant messaging, Twidroid). Therefore, in the future,
we would expect an increase in the simultaneous network
flows, from those shown in Figs. 2 and 4.

Yet, assuming connection length distributions remain
unchanged, increased multitasking will not affect the
usability and effectiveness of the general case of Wait-n-
Migrate nor the Resumption Agent. Indeed, assuming the
device can remain connected to two networks simulta-
neously, flows from multiple simultaneous applications
will not affect each other and we can consider each
application independently. Therefore, we believe our
results are valuable on newer iOS versions and other
operating systems with multitasking support.

4 MIGRATION WITHOUT NETWORK SUPPORT

Based on the findings from Section 3, for the objective of
migrating network flows between networks, we focus on
seamlessly migrating short-lived flows or flows using
standard protocols such as HTTP and FTP. We provide
two novel and complementary mechanisms for migrating
such flows without changing preexisting applications,
infrastructure and protocols, and with minimal disruption
to the user. We envision that in most systems, Wait-n-
Migrate will be used primarily, and Resumption Agent will
be used to migrate flows that were not successfully
migrated by Wait-n-Migrate.

41 Wait-n-Migrate
Our first method leverages the fact that most flows are short
lived, as seen in Section 3. Wait-n-Migrate typically requires

684 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Switch Primary Interface
{update routing table, DNS}

Analyze and Kill Appropriate
TCP Flows Immediately

Wait For TCP Flows to
Terminate Themselves

Force All Flows to Migrate

!

Flows Automatically Restart
on New Interface

Fig. 6. Flowchart for Wait-n-Migrate.

the device to be able to connect to multiple networks
simultaneously. This may be through multiple interfaces
(e.g., 3G and Wi-Fi) or through one interface (e.g., multiple
Wi-Fi networks through Virtual Wi-Fi [33]).

To migrate one or more flows between two networks,
Wait-n-Migrate operates as follows (Fig. 6). First it enables
both networks so the system has simultaneous connectivity
to both. Second it ensures all new flows are created on the
new network. Then, it waits for the flows on old network to
terminate naturally, up to a specific wait-time (Fig. 7). The
wait-time for each flow is a parameter determined by the
particular migration policy and can be set according to
application, bandwidth, and power considerations, and
may be adaptive according to flow characteristics presented
in Section 3. A flow is assumed to be successfully migrated
when it terminates naturally by the wait-time.

Different wait-time values can be used for switching to
different networks. For example, when the system policy
requests a network switch to a slower or less efficient
network, for example, to assure connectivity, the wait-time
can be set to infinite, i.e., until losing connectivity. On the
other hand, when switching back to the faster/more
efficient network, a shorter wait-time should be used.
Finally, if there are no remaining flows on the old network,
the system can disable or power it off altogether.

For systems that can be connected to only one network ata
time (i.e.,, without simultaneous network connectivity), a
special case of Wait-n-Migrate can be used. This special case
takes advantage of the fact that there are few simultaneous
TCP flows. It monitors TCP flows and attempts to choose the
best moment to switch within a specifically allowed time
range, to minimize disruptions. This is possible through the
statistical properties of TCP flows, as presented in Section 3.

Finally, Wait-n-Migrate can employ flow lifetime pre-
diction to further improve its effectiveness and efficiency.
Wait-n-Migrate does not interfere with short-lived flows to
avoid user disruption. However, for flows that are known
to be highly likely to live beyond the wait-time, for example,
based on the findings in Section 3, Wait-n-Migrate can
terminate them immediately. For example, we already
know that several types of flows are long lived, for example,
Push notifications and idle e-mail flows. If the device is
switching to a faster or more energy-efficient network,
Wait-n-Migrate can terminate such flows immediately, thus
improving performance.

Switch
request Timeout
1 1

flow 4
flow 5

long life / idle flow
1

Switch
request Timeout
1
1

flow 3
flow 4

long life / idle flow

\4

Switch

Time event

Fig. 7. Wait-n-Migrate operation (Top), and the special case without
requiring simultaneous connectivity (bottom).

4.2 Resumption Agent

Our second method, Resumption Agent, leverages the fact
that many interactive applications use standard application
layer protocols such as HTTP, HTTPS, as highlighted in
Section 3.2, and that most servers for these protocols
support resume. Resumption Agent is a locally run proxy
that enables flow migration for most such flows. It provides
a safety net to reduce the user impact of network switching
when Wait-n-Migrate terminates a flow for migration. With
Resumption Agent, Wait-n-Migrate can be more aggressive
in migrating flows and, therefore, allow for faster switching.

Resumption Agent can support any application protocol
that allows for resuming from an arbitrary location within a
data transfer. Several key standard application-layer proto-
cols, including HTTP and FTP, provide adequate support
for resumption of a terminated transfer. For example, the
HTTP standard, from version 1.1 onwards (1996), supports
specifying a range when requesting a webpage. The FTP
standard also supports resuming via the rest command.
Standard e-mail protocols (e.g., IMAP, POP, and SMTP) can
also be restarted from the beginning of any e-mail, or any
individual attachment in the case of IMAP.

Resumption Agent works as follows: It requires a
background service running only on the device itself,
which acts as a proxy, and modifies the phone settings so
that applications use this proxy to connect to the internet.
If a flow is disconnected prematurely, Resumption Agent
automatically resumes the transfer from where the flow
was cut off. Therefore, when a flow needs to migrate to a
new network, it can be terminated on the old network
and resumed on the new network in transparent manner
to the application.

We conjecture that Resumption Agent can employ flow
lifetime prediction to further improve its effectiveness and
efficiency. For web flows, their sizes are typically know at
the beginning of the transfer, through the HTTP header
response Content-Length. Therefore, if Resumption Agent is
used in conjunction with Wait-n-Migrate, flows that are
expected to last beyond the wait-time can be killed and
resumed immediately by Resumption Agent.

We note that download managers, such as wget, support
the automatic resuming of static content. Yet, they are
unable to handle the challenge of unsupported content

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT 685

(as discussed below). More importantly, web browsers (on
both PCs and phones), and most other applications (e.g., the
iPhone YouTube application) lack automatic resuming
functionality. In contrast, Resumption Agent is application
agnostic and appears as a regular proxy server to applica-
tions, thus providing a system level solution for all
preexisting applications. Moreover, Resumption Agent can
handle network migration and two nontrivial challenges to
Resumption Agent for web flows, posed by unsupported
content and encrypted HTTPS flows. We next discuss them
and present our solutions.

4.2.1 Unsupported Content

There are three groups of content that cannot be resumed in
the middle of the transfer:

1. The first group includes content that does not allow
resuming. For example, some servers may ignore
HTTP Range requests altogether or for specific
content, such as small transfers, or chunk encoded
data (the size of the data is not known beforehand).
In this case, the transfer, if interrupted, must be
restarted from the beginning, resulting in a second
and unnecessary transfer of the initial portion, which
the Resumption Agent will ignore.

2. The second group is content uploads, usually using
HTTP POST, in which there is always the risk of
repeating an action, for example, a purchase. In such
cases, such as when the user refreshes a page with
POST content, web browsers present the user with a
warning. Resumption Agent uses the same behavior
and will avoid automatically resuming such a
transfer if it is disconnected.

3. The third group is dynamic content that changes
significantly for every reload. Resumption Agent
deals with dynamic content using two methods.
First, the HTTP headers Pragma:no-cache and Cache-
Control:no-cache in the request and response headers,
respectively, indicate dynamic content, as the pre-
vent proxies and other web servers from caching the
content. Thus, if Resumption Agent sees these tags,
it can abstain from automatically resuming a failed
transfer. Second, to support dynamic content that
does not provide hints in the headers, Resumption
Agent always resumes from a preset length prior to
the disruption. It then compares the overlapping
sections. If the overlapping sections are identical,
Resumption Agent will simply continue with the
resume. If the overlapping sections become identical
after applying a small offset to the data, for example,
to account for a slightly smaller or larger dynamic
advertisement content, it will correct the offset and
can continue with the resume. Only if the over-
lapping sections are not identical even after applying
an offset, will Resumption Agent abort the resume
and the transfer will fail.

4.2.2 Encrypted HTTPS Flows

A greater challenge comes from HTTPS, as it is impossible
for a regular proxy to directly inspect its contents, which is
end-to-end encrypted by SSL. Indeed, when an application

HTTP Regular Proxy or HTTP

====)) Migration Agent el

server.com

Browser

HTTP

server.com
certificate signed
by trusted CA

—
<

Browser

Regular Proxy HTTPS

server.com

Regular HTTPS

i iy

server.com

server.com
i ;
asdiilEl S certificate signed
by Trusted CA

\
|
|
by Resumption |
Agent |
I |

—— I |' I
|
|
|

)

_ Browser P

N ——————

Resumption
Agent

D

|
/

server.com

Resumption Agent, man-in-the-middle HTTPS

Fig. 8. Regular proxy operation and Resumption Agent man-in-the-
middle operation for a browser application.

wants to connect to a HTTPS server through a typical proxy,
it sends a CONNECT command to the proxy. The proxy
then creates a tunnel to the requested server, without
touching the transferred content. Such end-to-end encryp-
tion would make it impossible to analyze the data,
necessary for transparently resuming or striping transfers.

Resumption Agent employs a novel and secure two-part
solution to this challenge. First, it will exploit a man-in-the-
middle attack. That is, as shown in Fig. 8, Resumption Agent
presents itself to the client as the destination server. It then
connects to the destination server, and therefore has access
to the transferred stream, and can perform the same
functionality it does for HTTP. We note that the open
source web proxy, squid, has built-in support for such man-
in-the-middle operation [42].

A standard man-in-the-middle attack by a third party is,
however, unable to present the correctly signed certificate
to the client application, and depending on system policies,
it typically raises a warning to the user. Changing system
policies to ignore security certificates would open the door
to any man-in-the-middle attack, and is therefore unaccep-
table. Indeed, to maintain security, the certificate check
must be strictly enforced.

The second part of our solution addresses this challenge
without compromising security regarding an external man-
in-the-middle attacker. All computer systems, including
our iPhones, depend on a number of preinstalled Certificate
Authorities (CAs) to sign and validate all server certificates.
Since Resumption Agent runs fully on the device and is not
a third party, it can install its own local CA on the device
without compromising security. This is possible on the
iPhone [43] as well as other platforms, such as Android
[44]. Resumption Agent can then sign the certificates it
presents to applications, preventing applications from

686 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

displaying warning messages. Resumption Agent has to
create a new certificate once for each HTTPS domain the
user accesses. We have measured the overhead of certificate
generation on the iPhone 3GS to be on average 1.7 seconds,
with a standard deviation of 1.2 seconds, measured over
100 experiments.

To maintain security, it is imperative to strictly enforce
certificate verification between clients and servers. Therefore,
Resumption Agent itself verifies the server security
certificate instead of the application (e.g., the browser). If a
server’s certificate is not correctly signed, Resumption Agent
(instead of the application) displays a warning to the user.
The user can then decide whether to continue or forgo a
potentially unsecure connection. We conjecture that a
consistent warning for invalid certificates from Resumption
Agent may be more understandable to end users, compared
to inconsistent application specific warnings. Therefore,
by providing a consistent Ul, Resumption Agent may
possibly reduce bad user decisions.

Finally, to improve protection against rouge rogue
applications that may be running directly on the phone, it
is important for Resumption Agent to generate a unique CA
for every device, to prevent fake certificates copied across
devices running Migration Agent.

4.3 Trace-Based Evaluation

In this section, we demonstrate the efficacy of Wait-n-
Migrate and Resumption Agent using our field collected
traces of real-life usage.

To evaluate Wait-n-Migrate, we calculate the percentage
of flows that are successfully transferred between networks
for different wait-time values, assuming a time uniform
distribution for the system initiating a switch. For example,
with a wait-time of 10 seconds, there is a 50 percent chance
that a 20 second lifetime flow is migrated successfully. To
evaluate Resumption Agent, we measure the feasibility of
resuming video streaming and browsing, and show that
both YouTube and the majority of the websites participants
most commonly visited indeed support resuming.

4.3.1 Wait-n-Migrate

As mentioned in Section 4.1, Wait-n-Migrate requires both
networks/interfaces to be connected simultaneously, at
least for the duration of the migration. For this evaluation,
we assume the device intends to migrate all existing
flows to a new network. To assist system designers to set
appropriate wait-times in accordance to their application
tradeoffs, we use our traces to calculate the percentage of
flows that Wait-n-Migrate can successfully migrate to the
new network without disruption for different values of
wait-time and for different applications, presented in Fig. 9.
For example, Wait-n-Migrate successfully migrates all web
flows for 90 and 95 percent of cases for wait-time values of
10 and 100 seconds, respectively.

As discussed in Section 4.1, the special case of Wait-n-
Migrate that can be employed if a system can only remain
connected to one network. The special case waits for the
moment where there are no ongoing flows to switch the
network. For our evaluation, we assume that this special
case of Wait-n-Migrate waits for the moment when there are
no web flows, to switch between networks. We have used

100% —
3 e
©80% {
%" / https
>60%
= = = = = http or
a https
040% A p
§ email
N20% A
g ? other
o 0% T T
1 10 100 1000
100%

E o http
£80% 4
ugn /' https
>60% -
35 = = = = http or
‘E 40% https
g email
3

0, -
§ 20% other
o
T 0% T T

1 10 100 1000

wait-time (seconds)

Fig. 9. Performance of Wait-n-Migrate (top) and the special case without
simultaneous network connectivity (bottom), according to application
and for different wait-times. Performance is measured using our field-
collected traces, and presented as the percentage of flows successfully
migrated to the target network.

our traces to calculate the percentage of flows that the
special case of Wait-n-Migrate can migrate to the new
network without disruption in this manner, shown in Fig. 9.
Since the special case does not wait for presumably
noninteractive flows (i.e., nonweb) to end, we can see a
significantly larger number of disconnections for those
flows. The special case of Wait-n-Migrate performs rela-
tively close to Wait-n-Migrate for web flows, as there are
rarely multiple web flows in our traces, as shown in
Section 3. However, we expect that increased complexity
and multitasking in future applications will reduce the
performance of the special case of Wait-n-Migrate.

4.3.2 Resumption Agent

We have studied the applicability of Resumption Agent for
two important applications, the web browser and the
YouTube application. We have tested YouTube and it is
fully supported by Resumption Agent; the stream is based
on standard HTTP protocols and our experiments show
that YouTube servers indeed support resuming videos at an
arbitrary location.

We evaluate the applicability of Resumption Agent for
web browsing by identifying whether it can be effective
for the top 100 websites our users have visited. We used
our user study logs to generate the list of top 100 websites
our users visit. For each of these 100 sites, we measure the
resume capability of the website’s homepage and its
embedded media (e.g., images). We test the homepages
(i-e., top page) because we found that many deeper, pages
may depend on previous state information, for example, a
specific referrer, cookies, or user login. We crawl these sites
both as an iPhone browser and as a desktop browser, set
through the User-Agent HTTP header. Every crawl, we
download each item three times, twice in full, and once

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT 687

100%

80% A B 1% length difference

60% # same length

static
40% A
M paritial resuming
20% A

0% L

web pages

embedded content

Fig. 10. Most webpages and all of their embedded content (among our
top 100 pages) are supported by Resumption Agent. Webpages and/or
content that do not support partial resuming need to be restarted from
the beginning.

from the middle of the transfer to determine 1) if the item
supports resuming, and 2) if the item is static. We present
the results for the iPhone and desktop browsers together,
since they were similar.

As shown in Fig. 10, we found that 100 percent of
embedded media is static and, therefore, supported by
Resumption Agent. Ninety-one percent of those support
resuming from the middle of a transfer; i.e., without the need
to retransfer the already transferred part. Among the HTML
homepages, 57 percent were static, and 9 percent had the
same content length between our two consecutive down-
loads, but had slightly different content. Furthermore, most
others had content lengths very close to each other. Fig. 11
shows the CDF for the length differences between two
consecutive downloads for our top 100 pages. We can see
that another 30 percent had content lengths within 1 percent
of each other. Therefore, we expect them to be supported by
Resumption Agent, as described in Section 4.2.1. We note
that only 16 percent of the HTML pages can be resumed
from the middle of the transfer, versus 89 percent of the
embedded content. The remaining pages that do not support
HTTP resume functionality incur an extra overhead of
redownloading the already transferred part, but can still be
resumed transparently to the application.

Finally, while none of the embedded content used HTML
tags to disallow caching, we observed that 30 percent of
the HTML pages were marked as such. However, of the
HTML pages that disallowed caching, 36 percent in fact had
static content, and 44 percent had content with the same
length. Therefore, we conjecture that the no-cache
response header may possibly be ignored by Resumption
Agent, even though it is in violation of the expectations of
the content provider.

5 iPHONE-BASED IMPLEMENTATION

We implemented both the Wait-n-Migrate and the Resump-
tion Agent mechanisms on the iPhone 3GS platform and
measured their system overhead to be negligible. While the
iPhone is a closed platform, a jailbreak has been consistently
available, making it possible to develop low-level system
software and implement these mechanisms.

We have constrained our solution to support legacy
applications. Our design can be extended to every major OS
with minimal modification; however, some implementation
details are OS specific, as described below.

100%

95%

90%

% of homepage html files

85%
0% 1% 2% 3% 4% 5% 6% 7% 8%

% length difference between two consecutive downloads

Fig. 11. Nonstatic webpages often have the same or similar content
lengths: CDF of the length differences of two consecutive downloads
(among the top 100 pages accessed by our users).

5.1 Wait-n-Migrate

The implementation of Wait-n-Migrate realizes four func-
tions: monitoring flows, selecting the primary network
interface, terminating individual TCP flows, and disabling a
network interface:

1. Flow monitoring. An intelligent network switching
policy requires detailed knowledge of flow proper-
ties. For example, it may want to force the migration
of high-bandwidth flows with long durations im-
mediately while switching to Wi-Fi. Toward this
end, Wait-n-Migrate continuously records flow
statistics, such as application, duration, destination,
and bandwidth, for all flows. This information is
reported in real time, as well as kept in a database
which is made available to the switching policy.

2. Selecting primary network. The implementation of
Wait-n-Migrate depends on the ability to modify the
system’s routing tables to direct all new flows
through the new network. The routing table consists
of a set of prioritized rules dictating which interface
and gateway to use for establishing new outgoing
sockets. Note that existing sockets for prior estab-
lished flows continue to use their original interface.
Furthermore, all common operating systems have a
routing table which they allow to be modified
through well-documented system calls. While it is
possible to directly modify the routing table on the
iPhone, we found that any modification to the
primary default gateway triggered the system to
reset the routing table. Instead, we were able to use
the scutil command to change the priority of the
networks; this in turn automatically changes the
routing table appropriately, as well as the DNS
settings, and sends a system wide notification of the
network change (as it typically does when switching
interfaces). The overhead for invoking a switch is
small, as it simply changes a system setting, and
takes less than 300 ms to complete. scutil is an OSX
specific tool, though other OSs provide proprietary
methods to select the primary network interface.
Conveniently, the iPhone does not disable the
cellular interface while Wi-Fi is connected, as some
platforms, such as Android, do. This, however, does
not have a power impact as the phone must leave the
cellular interface on to receive calls.

3. Terminating flows. As mentioned previously, it may
be necessary to force the migration of specific
flows, such as those that are known to be of long

688 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Establish Connection to Server
Forward Client Headers
Forward Server’s Reply Headers to Client
While download_unfinished && tries < MAXRETRIES {
Forward CHUNKSIZE bytes of data
If disconnect_signaled
Disconnect connection to server
If disconnected && eligible for resume
Reconnect to server
Forward original headers
If server supports ranges
Request range starting at prior to disconnect
else
Download and discard previously downloaded data
Tries++ }
Close sockets

Fig. 12. Pseudocode for Resumption Agent.

duration. We have achieved this by porting tcpkill
to the iPhone platform. tcpkill has been ported to
all major kernels, including Darwin, Windows,
FreeBSD, OpenBSD, HP-UX, AIX, Solaris, and
Linux. tcpkill uses libpcap and libnet to detect/
monitor the TCP stream and inject a TCP RST
packet that kills the connection. When the applica-
tion reconnects, it is automatically routed through
the new network.

4. Disabling network. Wait-n-Migrate provides a me-
chanism to disable the entire network being
migrated from. This can be useful after individual
flows have been appropriately dealt with, or none
of the flows require special treatment, depending
on policy. Every major OS has methods to disable
network interfaces. For UNIX-based OSs this is
typically “ifconfig interface down.” Unfortunately,
this method currently does not work on the
iPhone; however, similar functionality can be
achieved through the scutil or ipconfig commands.
Additionally, low-level ioct! calls can also accom-
plish this behavior.

5.2 Resumption Agent

We implemented Resumption Agent in 1,400 lines of C
code; it can be built and run on any POSIX compliant
system, including Linux and iOS. Resumption agent is
similar to other proxies, such as squid, in that it acts as a
relay point for Internet communication between clients and
servers, complies with HTTP 1.0/1.1 specifications, and
handles multiple concurrent connections.

Our implementation (Fig. 12) leverages standard UNIX
sockets and multithreading. When Resumption Agent
starts it initializes a pool of worker threads, using libpth-
read, to handle concurrent requests. Each thread handles
one request at a time; however, more threads can be
dynamically created to handle heavy loads. Creating the
threads in advance reduces latency for handling incoming
requests. Next, the agent uses the listen() command to start
listening on a predefined TCP port, such as 8080, for
incoming connections.

When a new incoming client connection is received,
Resumption Agent uses the connection’s file descriptor to
hand the request to a worker thread. The worker thread

then uses asynchronous nonblocking UNIX IO, read_nio(), to
read from the connection. It parses the client headers,
then establishes a connection to that server and forwards
the client’s request headers to the server. When the
server begins answering the request, the worker thread
forwards the data back to the client. We note that for each
transfer, Resumption Agent only has to process the header
data; everything else is simply forwarded without proces-
sing overhead, minimizing any performance impact.
Furthermore, to reduce CPU usage and bandwidth without
increasing latency, the worker threads employ a large read
size of 2 KB, or the amount of data available in the system
queue, from the server before forwarding it to the client.

The socket() implementation usually allows a socket time-
out option to be specified, to report a disconnection if
no data have been sent after the specified time-out.
Unfortunately, while the iPhone appears to implement this
option, it failed to function. Thus, we implemented our own
time-out detection, with the same behavior. If a time-out is
detected, or the socket throws any error, the worker thread
reestablishes a connection to the server and attempts to
resume the transfer where it left off. The worker will retry
up to a predefined number of times, by default 50, before
giving up; this keeps the worker from running infinitely
and flooding the network, if the server or network becomes
unavailable for extended periods of time.

We have measured the performance impact of Resump-
tion Agent to be minimal in normal usage. In particular,
Resumption Agent consumes less than 300 KB of memory,
and it increases linearly with the number of concurrent
transfers. Its mean CPU consumption is negligible when
idle, and 3-4 percent when actively handling transfers. Most
importantly, we have measured the additional latency
introduced by the Resumption Agent to be statistically
insignificant over 200 test runs.

6 ExAMPLE PoLicy: AUTOSWITCH

To evaluate the combined effectiveness of the Waitn-
Migrate and Resumption Agent mechanisms, we have
developed AutoSwitch, an automatic network interface
switching policy. AutoSwitch attempts to offload data
from cellular to Wi-Fi as much as possible, with minimum
disruptions to the user. AutoSwitch solves a common
complaint about Wi-Fi [45]—that it is unreliable or
unusable at low signal levels, such as while the user is
moving in and out of coverage areas. To achieve this goal,
AutoSwitch intelligently switches between wireless net-
works using Wait-n-Migrate and Resumption Agent,
before losing connectivity (e.g., due to mobility). We note
that other solutions have been proposed to offload cellular
traffic on Wi-Fi, for example, [6], but they typically rely on
a mobility gateway/proxy to handle network switches,
with inherent latency and deployability drawbacks as
discussed in Section 2.2.

6.1 AutoSwitch Design

AutoSwitch attempts to migrate TCP flows from Wi-Fi to
cellular before Wi-Fi coverage is dropped or becomes
unreliable, and migrate back to Wi-Fi when a reliable Wi-Fi

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT 689

100%

80% o/
60% *r %

40%

Probability of
Disconnection

Jd
/
.
®
20% K

° _

[g 1

O% WA
40 50 60 70 80 90
Signal Strength (-dB)

100

Fig. 13. Probability of disconnection versus Wi-Fi signal strengths.

connection becomes available again. For simplicity, we
assume that cellular coverage is always available.”

Often, in particular for the case of mobility, switching
between networks occurs due to forced disconnections. For
example, a phone may switch from 3G to a Wi-Fi network
when Wi-Fi becomes available, but move out of Wi-Fi
coverage shortly afterwards; thus, the phone is forced to
switch back to 3G. In such a case, it is too late to effectively
use Wait-n-Migrate. However, previous work shows that it
is indeed possible to accurately predict network conditions,
and therefore initiate the network switch before losing
coverage. For example, Breadcrumbs [46] and our previous
work [47] predict network conditions for the near and far
future, respectively. As our main focus is on flow migration
and not on the switching policy, we use a simple yet
effective predictor, signal strength [9], [48], to initiate a
network switch before losing Wi-Fi coverage.

To determine the policy for switching to and from Wi-Fi,
we extended LiveLab for three iPhone 3GS users for three
weeks to continuously test and record network disconnec-
tions, measured by the ping tool. These three users acted as
a sampling tool to measure Wi-Fi reliability at different
signal strengths, collecting over 1 million connectivity tests,
shown in Fig. 13. We define a Wi-Fi connection as
disconnected if all ping tests over a period of 5 seconds
are lost, regardless of the reported signal strength. We can
see that Wi-Fi starts to become unreliable starting at
approximately —82 dBm on iPhone 3GS.

Based on these results, we employ a simple hysteresis
over both time and signal strength to reduce erroneous
switching. AutoSwitch, using Wait-n-Migrate and Resump-
tion Agent, switches to cellular when a Wi-Fi signal level
of —75 dBm or less is maintained over 3 seconds, and
switches back to Wi-Fi when Wi-Fi signal strength reaches
—70 dBm. We chose the —75 dBm threshold, instead of
—82 dBm, to provide a safety zone so that dynamics and
fluctuations in the Wi-Fi signal does not make it fall below
—82 dBm and cause disruptions. Clearly, a smaller safety
zone would reduce the success rate, but transfer a larger
portion of data over Wi-Fi.

6.2 Trace-Based Evaluation

We have used the traces from LivelLab to evaluate the
efficacy of AutoSwitch using Wait-n-Migrate, during

2. This was the case for the field measurement of AutoSwitch. Of course,
it is possible for AutoSwitch to check for cellular data coverage, and avoid
switching from Wi-Fi when there is no cellular data coverage (i.e., bad Wi-Fi
is better than no cellular).

Wait-n-Migrate, 100s
Wait-n-Migrate, 30s

brute force

Wait-n-Migrate, 10s ‘
NO AutoSwitch |

0 50 100 150 200 250
Expected # of failures

Fig. 14. AutoSwitch significantly reduces the expected number of
disruptions in 1,120 hours of interactive usage traces with Wi-Fi
enabled, for different wait-time values.

routine interactive usage. As mentioned in Section 6.1,
LiveLab provides us with continuous signal strength
measurements, but not connectivity measurements. We
utilize the Wi-Fi signal strength measurements and the
probability of disconnection at different signal levels,
presented in Fig. 13, to calculate the expected number of
disruptions in a web application. We further assume that if
Wi-Fi is not disconnected at a specific signal level in a
particular usage session, it will not be disconnected at that
signal level for the entire session.

In Fig. 14, we present the expected number of disconnec-
tions for AutoSwitch using the Wi-Fi signal strength
thresholds identified in Section 6.2. The number of dis-
connections is calculated for Wait-n-Migrate with wait-
times of 10, 30, and 100 seconds, as well as for the case
where Wi-Fi is left on (no AutoSwitch), and for the case
where AutoSwitch switches between networks in a brute-
force manner, where one network is simply disabled and
another enabled.

Using 1,120 hours of interactive usage traces with Wi-Fi
enabled, for web usage, the users were expected to
experience 213 disruptions without AutoSwitch. Employing
AutoSwitch using Wait-n-Migrate and a constant wait-time
of 10, 30, and 100 seconds, users were expected to
experience 80, 87, and 91 percent fewer disconnections,
respectively (Fig. 14). In contrast, AutoSwitch with brute-
force switching, i.e., without Wait-n-Migrate, slightly
increases disconnections to 246, due to false positives.

We must note that users indeed take note of the mobility
and coverage limitations of Wi-Fi, as confirmed by our
motivational user study from Section 2.1 and prior work
[45]. Therefore, they may change their behavior and turn off
Wi-Fi or avoid using the phones altogether in conditions
they know it is prone to failing. Hence, we expect that the
results in this section, obtained from the traces only when
Wi-Fi was enabled and users were browsing the web,
underestimate the potential benefit from AutoSwitch using
Wait-n-Migrate.

6.3 Field Evaluation

We further evaluate AutoSwitch using both Wait-n-Migrate
and Resumption Agent on the iPhone platform. For
performance evaluation we wrote a script to automatically
download a predetermined file over HTTP, from a server
that supports resuming, every five seconds. We tested
AutoSwitch using transfer sizes of 10 KB, 100 KB, and 1 MB,
as well as Wait-n-Migrate alone. We then measured the

690 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 15. Map of paths travelled in Rice University, for walking (1 km, Blue
loop) and driving (3 km, Red loop) scenarios.

number of transfers that were fully completed without
errors over two predetermined paths in Rice University,
shown in Fig. 15; 1) while walking commonly used paths,
and 2) while in a car traveling at approximately 30 km/h
along campus roads. The walking path was approximately
1-km long, included indoor areas in two buildings, crossed
distinct areas with good to excellent Wi-Fi connectivity
(=70 dBm or better signal strength), and the phone was
associated with a Wi-Fi access point for 95 percent of the
time. The driving path was approximately 3-km long and
only had one area of good Wi-Fi signal strength, but the
phone was associated with a Wi-Fi access point for
80 percent of the time. Each test run lasted approximately
1 hour, and included approximately 350 attempts for each
transfer size.

The success rates of transfers, as observed by our script,
are shown in Fig. 16. As expected, due to Wi-Fi signal
variations, there are a significant number of failed transfers
without AutoSwitch. Using AutoSwitch in conjunction
with Wait-n-Migrate significantly reduced the number of
disruptions. Furthermore, since the server supported
resuming, Resumption Agent, used in conjunction with
Wait-n-Migrate, was able to further reduce disruptions,
completely eliminating them while walking, and increased
the success rate while driving to over 95-99 percent for
different file sizes.

7 DISCUSSION

Our work focuses on providing system mechanisms for
migrating flows between networks. Various policies have
been proposed to switch between or aggregate networks.
AutoSwitch is one such policy, and unambiguously
demonstrates the effectiveness of Wait-n-Migrate and
Resumption Agent in supporting seamless flow migration.
These system mechanisms can be utilized to enable the
immediate deployment of many other performance and
efficiency-enhancing policies studied in literature, without
practical deployment issues:

Multihoming/Load Balancing. When used for load balan-
cing and multihoming, Resumption Agent has the key
advantage of knowing the length of a flow at its very early
stages, through the HTTP response headers, as well as the
properties and conditions of the available networks. This

100%

o 4'\-_
60%

40%

AutoSwitch using
Resumption Agent
& Wait-n-Migrate
~#-AutoSwitch using
Wait-n-Migrate

Success rate

20%

0% ——no AutoSwitch

10KB 100 KB 1MB
Transfer size
100%
AutoSwitch using
° 80% Resumption Agent
2 X .
E 60% & Wait-n-Migrate
a ~-AutoSwitch using
S 40% i i
S Wait-n-Migrate
2 20%
0% =—no AutoSwitch
G
10KB 100KB 1MB

Transfer size

Fig. 16. AutoSwitch significantly increases the success rate of 10-KB,
100-KB, and 1-MB transfers when walking (top) and driving (bottom) on
Rice Campus.

allows Resumption Agent to intelligently allocate each flow
on the appropriate network interface.

Striping. Resumption Agent can be extended to support
striping larger transfers, as long as the content supports
resuming, i.e.,, download different parts of a transfer
simultaneously through different network interfaces, and
then amalgamate these chunks before sending them to the
client. For striping content that contains dynamic parts, as
described in Section 4.2.1, it is necessary to ensure the
dynamic portions are downloaded in single chunks.

Mirroring. For transfers that do not support striping, or
that are very small compared to the connection latency,
Resumption Agent can be extended to simultaneously
request the transfer on multiple networks, and return
whichever finishes first. While this reduces efficiency, it
can reduce user perceived latency, especially under highly
varying network environments.

Preemptive network switching. When Resumption Agent is
aware of an impending network switch, it can establish a
connection over the new network and request the remain-
ing portion of the flow, before killing the existing flow. This
allows the Resumption Agent to further minimize the
latency incurred when resuming a flow.

8 CONCLUSION

We presented a first-of-its-kind characterization of IP traffic
on modern smartphones using traces collected in real-life
usage of 27 iPhone 3GS users over a period of three months.
We show that the traffic is almost exclusively TCP, and TCP
flows are often short lived and rarely concurrent for
interactive applications.

Driven by these findings, we devised two novel and
complementary system mechanisms to migrate TCP flows
between networks without network or application support:
Wait-n-Migrate and Resumption Agent. While Wait-n-
Migrate significantly decreases, or even eliminates con-
nectivity gaps when switching between networks, Resump-
tion Agent opportunistically resumes flows across
connectivity disruptions and network switches. Combined,

RAHMATI ET AL.: SEAMLESS TCP MIGRATION ON SMARTPHONES WITHOUT NETWORK SUPPORT

these two system mechanisms mitigate, and in many cases
eliminate, the impact of widely varying network conditions
on mobile applications, as we demonstrate using our
implementation, AutoSwitch. The seamless flow migration
without network support collectively enabled by Wait-n-
Migrate and Resumption Agent allows for immediate
deployment of performance and efficiency-enhancing po-
licies, including multihoming and traffic offloading.

REFERENCES

(1]

(2]

(3]

(4]

(5]

o]

(7]

(8]

[l

(10]

(1]

[12]

(13]

(14]

(15]

(16]

[17]

(18]

[19]

(20]

(21]

A. Rahmati and L. Zhong, “Context-for-Wireless: Context-
Sensitive Energy-Efficient Wireless Data Transfer,” Proc. ACM
Int’l Conf. Mobile Systems, Applications and Services (MobiSys),
pp. 165-178, 2007.

W. Qadeer, T.S. Rosing,]J. Ankcorn, V. Krishnan, and G. De
Micheli, “Heterogeneous Wireless Network Management,” Proc.
Workshop Power Aware Computer Systems (PACS), pp. 86-100, 2003.
N. Thompson, G. He, and H. Luo, “Flow Scheduling for End-Host
Multihoming,” Proc. IEEE INFOCOM, 2006.

S. Kandula, K.C.-]J. Lin, T. Badirkhanli, and D. Katabi, “FatVAP:
Aggregating AP Backhaul Capacity to Maximize Throughput,”
Proc. USENIX Symp. Networked Systems Design and Implementation
(NSDI), 2008.

P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and S.
Banerjee, “MAR: A Commuter Router Infrastructure for the
Mobile Internet,” Proc. ACM MobiSys 2004.

A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Aug-
menting Mobile 3G Using WiFi,” Proc. ACM MobiSys, 2010.

B. Han, P. Hui, V. Kumar, M. Marathe, G. Pei, and A. Srinivasan,
“Cellular Traffic Offloading through Opportunistic Communica-
tions: A Case Study,” Proc. ACM Int’l Workshop Challenged
Networks (CHANTS), 2010.

T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots:
Reducing the Power Consumption of Wireless Mobile Devices
with Multiple Radio Interfaces,” Proc. ACM MobiSys, pp. 220-232,
2006.

A. Giannoulis, M. Fiore, and E.W. Knightly, “Supporting
Vehicular Mobility in Urban Multi-Hop Wireless Networks,”
Proc. ACM MobiSys, 2008.

A.Laiand]. Nieh, “Limits of Wide-Area Thin-Client Computing,”
ACM SIGMETRICS Performance Evaluation Rev., vol. 30, no. 1,
pp- 228-239, 2002.

J. Huang, Q. Xu, B. Tiwana, Z. Mao, M. Zhang, and P. Bahl,
“Anatomizing Application Performance Differences on Smart-
phones,” Proc. ACM MobiSys, pp. 165-178, 2010.

A. Agresti and B.A. Coull, “Approximate Is Better than ‘Exact’ for
Interval Estimation of Binomial Proportions,” The Am. Statistician,
vol. 52, no. 2. pp. 119-126, 1998.

E. Gustafsson and A. Jonsson, “Always Best Connected,” IEEE
Wireless Comm., vol. 10, no. 1, pp. 49-55, Feb. 2003.

K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J]. Makela,
R. Pichna, and]. Vallstron, “Handoff in Hybrid Mobile Data
Networks,” IEEE Personal Comm., vol. 7, no. 2, pp. 34-47, Apr. 2000.
D. Maltz and P. Bhagwat, “MSOCKS: An Architecture for
Transport Layer Mobility,” Proc. IEEE INFOCOM, 1998.

R. Chalmers and K. Almeroth, “A Mobility Gateway for Small
Device Networks,” Proc. IEEE Second Int’l Conf. Pervasive Comput-
ing and Comm. (PerCom), 2004.

P. Sharma, S. Lee, J. Brassil, and K. Shin, “Handheld Routers:
Intelligent Bandwidth Aggregation for Mobile Collaborative
Communities,” Proc. IEEE First Int’l Conf. Broadband Networks
(BroadNets), 2004.

H. Pucha and Y. Hu, “Overlay TCP: Ending End-to-End Transport
for Higher Throughput,” Proc. ACM SIGCOMM Poster, 2005.

H. Hsieh and R. Sivakumar, “pTCP: An End-to-End Transport
Layer Protocol for Striped Connections,” Proc. IEEE Int’l Conf.
Network Protocols (ICNP), 2002.

H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley,
“Overlay TCP for Multi-Path Routing and Congestion Control,”
IEEE/ACM Trans. Networking, 2006.

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic Load
Balancing without Packet Reordering,” ACM SIGCOMM Computer
Comm. Rev., vol. 37, no. 2, pp. 51-62, 2007.

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

[36]

(371

(38]

(39]

(40]

[41]

(42]
(43]

(44]

[45]

[40]

691

C. Traw and J. Smith, “Striping within the Network Subsystem,”
IEEE Network, vol. 9, no. 4, pp. 22-32, July/Aug. 1995.

H. Sivakumar, S. Bailey, and R.L. Grossman, “PSockets: The Case
for Application-Level Network Striping for Data Intensive
Applications Using High Speed Wide Area Networks,” Proc.
ACM/IEEE Conf. Supercomputing, 2000.

H. Hsieh, K. Kim, Y. Zhu, and R.A. Sivakumar, “Receiver-Centric
Transport Protocol for Mobile Hosts with Heterogeneous Wireless
Interfaces,” Proc. ACM MobiCom, 2003.

S. Kim and]. Copeland, “TCP for Seamless Vertical Handoff in
Hybrid Mobile Data Networks,” Proc. IEEE Global Comm. Conf.
(GlobeCom), 2003.

K.-H. Kim, Y. Zhu, R. Sivakumar, and H.-Y. Hsieh, “A Receiver-
Centric Transport Protocol for Mobile Hosts with Heterogeneous
Wireless Interfaces,” Wireless Networking vol. 11, no. 4, pp. 363-382,
2005.

M. Stemm and R. Katz, “Vertical Handoffs in Wireless Overlay
Networks,” Mobile Networks and Applications, vol. 3, no. 4, pp. 335-
350, 1998.

C. Perkins, S. Alpert, and B. Woolf, Mobile IP: Design Principles and
Practices. Addison-Wesley Longman, 1997.

C. Perkins, “Mobile IP,” IEEE Comm. Magazine, vol. 35, no. 5.
pp- 84-99, May 1997.

S. Nirjon, A. Nicoara, C.-H. Hsu, J.P. Singh, and]. Stankovic,
“MultiNets: Policy Oriented Real-Time Switching of Wireless
Interfaces on Mobile Devices,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), 2012.

A.C. Snoeren, D.G. Andersen, and H. Balakrishnan, “Fine-Grained
Failover Using Connection Migration,” Proc. USENIX Symp.
Internet Technologies and Systems, 2001.

T. Alperovich and B. Noble, “The Case for Elastic Access,” Proc.
ACM Int’l Workshop Mobility in the Evolving Internet Architecture
(MobiArch), 2010.

R. Chandra and B. Bahl, “MultiNet: Connecting to Multiple IEEE
802.11 Networks Using a Single Wireless Card,” Proc. IEEE
INFOCOM, 2004.

H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R.
Govindan, and D. Estrin, “Diversity in Smartphone Usage,” Proc.
ACM MobiSys, 2010.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D.A.
Estrin, “First Look at Traffic on Smartphones,” Proc. Internet
Measurement Conf. (IMC), 2010.

A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, and].P. Singh,
“MobiCom 2010 Poster: Mobile TCP Usage Characteristics and the
Feasibility of Network Migration without Infrastructure Support,”
ACM SIGMOBILE Mobile Computer Comm. Rev., vol. 14, pp. 10-12,
2010.

A. Rahmati, C. Shepard, C. Tossell, A. Nicoara, L. Zhong, P.
Kortum, and J. Singh, “Seamless Flow Migration on Smartphones
without Network Support,” Technical Report 2010-1214, Rice
Univ., http://arxiv.org/abs/1012.3071, 2010.

C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum,
“LiveLab: Measuring Wireless Networks and Smartphone Users
in the Field,” Proc. Workshop Hot Topics in Measurement & Modeling
of Computer Systems (HotMetrics), 2010.

AdMob, “Oct. 2009 Mobile Metrics Report,” http://metrics.
admob.com/2009/11/oct.-2009-mobile-metrics-report, Oct. 2009.
F. Dogar and P. Steenkiste, “Catnap: Exploiting High Bandwidth
Wireless Interfaces to Save Energy for Mobile Devices,” Proc. ACM
MobiSys, 2010.

M. Buchanan, “Gizmodo Blog: How Multitasking Works on a
Phone,” http://gizmodo.com /5527407 / giz-explains-how-
multitasking-works-on-a-phone, Apr. 2010.
“Squid-in-the-Middle SSL Bump,” Squid-Cache Wiki, http://
wiki.squid-cache.org/Features/SsIBump, 2013.

“iPhone Certificate Flaws,” Cryptopath Blog, http://cryptopath.
wordpress.com/2010/01/29/iphone-certificate-flaws, 2013.
“Adding .cer Certificates on Your Android Phone,” It's All About
Everything Blog, http:/ /www.abtevrythng.com/2010/06/adding-
cer-certificates-on-your-android.html, 2013.

A. Rahmati and L. Zhong, “A Longitudinal Study of Non-Voice
Mobile Phone Usage by Teens from an Underserved Urban
Community,” Technical Report 0515-09, Rice Univ., 2009.

AJ. Nicholson and B.D. Noble, “BreadCrumbs: Forecasting
Mobile Connectivity,” Proc. ACM MobiCom, pp. 46-57, 2008.

692 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

[47] A. Rahmati and L. Zhong, “Context-Based Network Estimation
for Energy-Efficient Ubiquitous Wireless Connectivity,” IEEE
Trans. Mobile Computing, vol. 10, no. 1, pp. 54-66, Jan. 2011.

[48] SK. Kim, C.G. Kang, and K.S. Kim, “An Adaptive Handover
Decision Algorithm Based on the Estimating Mobility from Signal
Strength Measurements,” Proc. Vehicular Technology Conf. (VCT),
2004.

Ahmad Rahmati received the BS degree in
computer engineering from the Sharif University
of Technology in 2004 and the MS and PhD
degrees from the Department of Electrical and
Computer Engineering at Rice University in
2008 and 2012. He is a senior staff scientist at
the Mobile and Wireless Group at Broadcom.
His publications received the ACM MobileHCI
Best Paper Award in 2007 and have been
featured twice as the spotlight paper of the
IEEE Transactions on Mobile Computing, in 2010 and 2011. His
research interests include mobile and wireless system design and
applications, context-aware computing through sensing and statistical
learning on large data, as well as human factors and HCI. He is a
member of the IEEE.

Clayton Shepard received the BS degree in
2008 and the MS degree in 2012 from Rice
University, where he is currently working toward
the PhD degree. He is a member of the Rice
Efficient Computing Group, led by Dr. Lin Zhong.
In 2008, he was a visiting researcher with
Motorola’s Advanced Research and Technology
lab, where he also interned in 2007. His
research interests include mobile systems and
ubiquitous low-power computing. His current
research focus is many-antenna base stations. In 2011 and 2012, he
interned with Bell Labs, Alcatel-Lucent. He received the NDSEG
Fellowship Award in 2011. He is a student member of the IEEE.

Chad C. Tossell received the BS degree in
psychology from the University of California,
Berkeley in 2003, the MS degree in applied
psychology from Arizona State University in
2006, and the PhD degree in psychology from
Rice University in 2012. He currently leads
training research for the US Air Force (USAF)
Research Laboratory at Wright-Patterson Air
Force Base, Ohio. He oversees research and
development efforts aimed at enhancing human
and team performance within command and control, intelligence, and
cyberspace domains. His other research interests include the use and
usability of mobile systems, personalization of technology, and the
human factors of voting with handheld devices.

Lin Zhong received the BS and MS degrees
from Tsinghua University in 1998 and 2000,
respectively, and the PhD degree from Princeton
University in September 2005. He is an associ-
ate professor in the Department of Electrical &
Computer Engineering, Rice University. He
received the US National Science Foundation
CAREER award and Best Paper Awards from
ACM MobiSys 2011, IEEE PerCom 2009, and
. ACM MobileHCI 2007. A paper he coauthored
was identified as one of the 30 most influential papers in the first
10 years of the Design, Automation & Test in Europe conference. His
research interests include mobile computing, human-computer interac-
tion, and nanoelectronics. He is a member of the |IEEE.

Philip Kortum received the PhD degree from
the University of Texas at Austin in 1994. He
is a faculty member in the Department of
Psychology at Rice University in Houston,
Texas. Prior to joining Rice, he was at SBC
Laboratories (now AT&T Laboratories) for al-
most a decade doing human factors research
and development in all areas of telecommuni-
cations. He continues to work on the research

3 and development of user-centric systems in
both the wsual (web design, equipment design, image compression)
and auditory domains (telephony operations, mobile computing and
interactive voice response systems).

Angela Nicoara received the computer science
degree from the Politehnica University of
Timisoara in 2002 and the PhD degree from
ETH Zurich in 2007. She has been a senior
research scientist at Deutsche Telekom Inno-
vation Labs, Silicon Valley Innovation Center,
since 2008. Her research interests encompass
services and mobile platforms, adaptive soft-
ware architectures, middleware, virtual ma-
chines, and distributed systems. Her current
research actlvmes include the development of open and programmable
mobile platforms (e.g., Android) and novel IT services to shape the
emerging trends in fixed and mobile infrastructure and services
sectors. She is a member of the |IEEE.

Jatinder Singh received the BS degree in
electrical engineering from the Indian Institute
of Technology, Delhi, in 2005, where he
graduated at the top of his class with an
Institute Silver Medal. He received the MS and
PhD degrees in electrical engineering from
Stanford University, where he received the
Stanford Graduate Fellowship and Deutsche
Telekom Fellowship. He is the director of Mobile
Innovation Strategy at the Palo Alto Research
Center (PARC) and a consulting associate professor in the Department
of Electrical Engineering at Stanford University. He was previously the
vice president of research with Deutsche Telekom, the parent company
of T-Mobile. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

