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6. SAMPLE APPLICATIONS 

The context dependency of mobile usage not only provides 
insight to the social behavior of humans, but can be uti-
lized in many applications, such as those in Figure 12. In 
this section, we provide several potential applications to 
highlight the efficacy and simplicity of our approach. Their 
performance gains are based on our best performing meth-
ods, i.e. using Supervised Binning and Bayesian combina-
tion. 

 Web bookmarks 
It is known that a few websites account for most of the typ-
ical user’s usage [42]. Accordingly, some browsers, e.g. 
Opera, offer a list of favorites or home screen that is con-
figurable by the user or automatically generated. This 
would provide with access to the user’s most common 
websites. Others provide a user configurable home page 
that is automatically loaded when the browser is run. Sim-
ilar to Section 4, we focus on individual domains, instead 
of pages within a domain.  
A context-aware web favorites list is a sample application 
that can present more likely choices to the user according 
to their context. Our findings, presented in Figure 11, show 
that a context-based solution for providing the user with 
either a single default home page, or a list of 10 websites, 
significantly outperforms an ideal static selection, with a 

miss rate of 15% vs. 25% for a list of 10 websites, and 42% 
vs. 68% for the single home page, and less than half the 
ideal static solution. Interestingly, the ideal static list of 10 
favorite websites outperforms the 10 most recently visited.  

Phone favorites list 
In order to assist users in making phone calls, phones typ-
ically provide the user with a redial button, a list of recent 
phone calls, and/or a user configurable favorites list. For 
example, the iPhone used in our study provided a list of 
recent phone calls as well as a user configurable favorite 
contacts list. A context-aware phone favorites list is a sam-
ple application that can present more likely choices to the 
user according to their context.  
On average, a static list of each user’s top 10 contacts has a 
miss rate of 32%, and a recent call list has a miss rate of 
28%. On the other hand, a context aware favorites list can 
reduce the users’ need to go through their phonebook by 
approximately five fold, to 6%. Furthermore, the miss rate 
of a redial button is 64%, but the context-based dial button 
has a miss rate of 27% (Figure 11). 

App Quicklaunch and Preloading 
Most phones often have a list of apps that are more readily 
available for users to run, i.e. quicklaunch. The iPhone pro-
vides room for four such apps, which are readily available 
on any page of the home screen, and users can also organ-
ize their apps so the most common are placed in the first 
page. A context-aware quicklaunch list is a sample appli-
cation that dynamically updates the quicklaunch list ac-
cording to the users’ context. Our findings show that it 
would have a miss rate of 16%, compared to the 39% miss 
rate of the ideal static quicklaunch, an improvement of 
three times. For 10 apps, the miss rate is just 4%, compared 
to 13% for the static case (Figure 11). 
Preloading is another possible application, where context-
based estimation of the application to be used can enhance 
performance. App preloading, including context-based 
methods have been widely studied in the past [43]. We 
have measured the app launch times on the substantially 

DetermineCostPerformanceOrdering(context_sensors) 

ForEach (sensor) in (sorted_free_context) do { 

    accuracy, usage = CombineNextContext(sensor) 

} 

ForEach (sensor) in (sorted_costly_context) do { 

    If AppConditionMet(accuracy, usage, costs[]) 

        Exit Loop 

    accuracy, usage = CombineNextContext(sensor) 

} 

Return (accuracy, usage) 

Figure 10: Pseudo-code for SmartContext 

 

     

     
 

Figure 9: Performance of SmartContext. For a range of minimum accuracy targets, how often costly context (i.e. 

accelerometer, cell ID, GPS) is accessed, how often the minimum accuracy target is met, and the overall average 

estimation accuracy. Web (left), phone (middle), and application (right) usage, for 1 (top), and 10 (bottom) re-

sponses. 
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faster iPhone 4. The measurements were repeated three 
times for each app, and we excluded content load times, if 
applicable. For the without preloading case, each app’s 
process was manually terminated between the runs. For 
the preloaded case, we started the app once, and closed it 
before the measurement run. Without preloading, the av-
erage load time was 2.0 seconds (median = 2.1, deviation = 
0.5). With preloading, the load times were 0.6 seconds for 
all the measured apps. These measurements show that, on 
average, preloading can improve app load times over three 
fold. We note that the iPhone and many other platforms 
utilize a most recently used algorithm to keep multiple 
apps in memory, given memory limitations. We compare 
our performance to the MRU algorithm, and show that the 
miss rate for 10 preloaded apps, the improvement is from 
9% to 4% (Figure 11).  Furthermore, for 3 preloaded apps, 
the miss rate is reduced from 31% to 17%, almost half.  

7. RELATED WORK 

Prior work (e.g. [2]) also define context dependency as a 
set of strict or probabilistic rules and relations between 
context(s) and the outcome. Others design and implement 
frameworks for sensing and processing context infor-
mation [44, 45]. For a survey, see Baldauf et al. [46].  These 
work attest to the significance and usefulness of context. 
Context information, has in the past been widely used for 
specific applications such as implicit user interaction (e.g. 
by Schmidt [5]) and information delivery (e.g. a reminder 
system by in [6], a tourist guide in [7], and content adapta-
tion in [3] and [4]). For a survey of such cases, see Chen and 
Kotz [47]. Others have presented system mechanisms 
based on context information, e.g. estimating and predict-
ing wireless network conditions [10], network routing [48], 
battery management [8, 49], and energy efficient GPS duty 
cycling [12, 13]. Further, Eagle and Pentland have shown 
that device usage patterns are indeed structured and pre-
dictable [50]. These designs and others depend on the con-
text dependency of device usage, and show significant, 
quantified, performance gains by exploiting context.   
A number of other work depend on knowledge regarding 
usage to perform. For example, the work in [10] predicts 
network conditions to choose the best network interface, 
but assume network usage is pre-known, even though it 
depends on the behavior of applications, services, and the 

user. As another example, the authors of [8] show that bat-
tery consumption is context dependent. The authors of [9] 
further research this problem by focusing on phone call us-
age, and show that call lengths, and therefore their energy 
consumption, are context dependent. Further, Eagle and 
Pentland have shown that device usage patterns are in-
deed structured and predictable [50]. The usefulness of 
context has been so significant that many researchers have 
designed and implemented frameworks for the specific 
task of sensing and processing context [44-46]. 
Our work presents a methodological solution for using 
multiple and various sources of context while managing 
their energy costs, and presents a formal definition of con-
text dependency as well as practical methods to calculate 
it. We abstain from focusing on a single application or ser-
vice, yet we provide practical insight into the relationship 
between context-dependency and the performance 
achievements of individual applications.  
A number of recent research have dealt with reducing the 
cost of acquiring context. These work attest to the chal-
lenge of energy efficiency in context awareness, but typi-
cally focus on single applications and/or static configura-
tions. They use one or more of the following three tech-
niques to reduce energy cost, while retaining acceptable 
performance. First: frequency reduction, as in [12-14]  re-
duces the sampling frequency of energy hungry context 
sensors. Second: sensor substitution utilizes lower energy 
cost context instead of energy hungry ones, as in [10, 12, 
13]. Third: sensor elimination attempts to utilize a subset of 
sensors. We take the third approach in SmartContext, but 
unlike previous work that focus on and take advantage of 
the properties of a specific application, such as activity de-
tection [15-18], we provide a generic framework for system 
designers to dynamically or statically optimize the cost / 

 

 

      
Figure 11:  Performance of context-based applica-

tions, presented as miss rates. Top: web bookmarks. 

Middle: phone favorites. Bottom: application 

launching or preloading 
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Figure 12: Sample applications that can benefit from 

a dynamic context-aware selection vs. currently static 

selections. Left: Browser displays a list of bookmarks 

when launched. Center: Favorite phone contacts. 

Right: Apps on the home screen, and the always-visi-

ble quick launch bar (bottom row). 
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