
1

Seamless Flow Migration on Smartphones
without Network Support

Technical Report 2010-1214
Ahmad Rahmati1, Clay Shepard1, Chad Tossell2, Angela Nicoara3, Lin Zhong1, Phil Kortum2, Jatinder Singh3

1 Dept. of ECE and 2Dept. of Psychology, Rice University, Houston, TX
3 Deutsche Telekom R&D Laboratories USA, Los Altos, CA

Abstract
This paper addresses the following question: Is it pos-

sible to migrate TCP/IP flows between different networks
on modern mobile devices, without infrastructure support
or protocol changes? To answer this question, we make
three research contributions. (i) We report a comprehensive
characterization of IP traffic on smartphones using traces
collected from 27 iPhone 3GS users for three months. (ii)
Driven by the findings from the characterization, we devise
two novel system mechanisms for mobile devices to sup-
port seamless flow migration without network support, and
extensively evaluate their effectiveness using our field col-
lected traces of real-life usage. Wait-n-Migrate leverages
the fact that most flows are short lived. It establishes new
flows on newly available networks but allows pre-existing
flows on the old network to terminate naturally, effectively
decreasing, or even eliminating, connectivity gaps during
network switches. Resumption Agent takes advantage of the
functionality integrated into many modern protocols to se-
curely resume flows without application intervention.
When combined, Wait-n-Migrate and Resumption Agent
provide an unprecedented opportunity to immediately de-
ploy performance and efficiency-enhancing policies that
leverage multiple networks to improve the performance,
efficiency, and connectivity of mobile devices. (iii) Finally,
we report an iPhone 3GS based implementation of these
two system mechanisms and show that their overhead is
negligible. Furthermore, we employ an example network
switching policy, called AutoSwitch, to demonstrate their
performance. AutoSwitch improves the Wi-Fi user experi-
ence by intelligently migrating TCP flows between Wi-Fi
and cellular networks. Through traces and field measure-
ments, we show that AutoSwitch reduces the number of
user disruptions by an order of magnitude. In contrast, we
show that brute-force switching would significantly in-
crease user disruptions.

1. Introduction
Modern mobile devices have access to multiple net-

works. Not only do they have multiple network interfaces,
such as cellular and Wi-Fi, but also a single interface may
access multiple networks, such as Wi-Fi hotspots from dif-
ferent providers. Over time, for example as the user moves,
the networks available to a mobile device and their quali-
ties vary greatly. Many researchers have recently demon-
strated the value of properly switching between networks

[1, 2] or aggregating them [3, 4]. Switching between net-
works can significantly improve the performance [5, 6],
energy efficiency [1, 7], and connectivity [8] of mobile
Internet. In this work, we focus not on policies, but mecha-
nisms for switching and/or aggregating networks on smart-
phones.

The key to switching between networks or aggregating
them is to change the network for an existing flow without
disrupting the corresponding application. Brute-force
switching between networks, where one is simply disabled
and another enabled, may lead to undesirable disruptions,
as our own experience corroborates and also is confirmed
by our user study. Solutions to this problem are available in
the name of handoff. Some require infrastructure or home
agent support, e.g. cellular handoff, connection gateway,
and Mobile IP, which incur extra operating expenses and
additional latency [9]. Others require changing the TCP/IP
protocol, which has been shown to be practically very diffi-
cult. Not surprisingly, no automatic switching or aggregat-
ing solutions have been deployed in practice.

The important question this paper addresses is the fol-
lowing: On modern mobile devices, is it possible to seam-
lessly migrate TCP/IP flows between different networks
without infrastructure support or protocol changes? Toward
answering this question, this paper presents three research
contributions.

First, we report a comprehensive characterization of
network traffic on smartphones using three-month traces
collected from 27 iPhone 3GS users. The characterization
provides key insights into the motivation and rationale of
our mechanisms. In particular, we have found that there are
few concurrent network flows during interactive usage,
flow lifetimes are typically short, and long-lived flows are
often predictable.

Second, we present and extensively evaluate two novel
system mechanisms implemented in a smartphone to mi-
grate flows between networks without network support and
without disruption to the user. The first mechanism, Wait-
n-Migrate, takes advantage of the fact that TCP flows are
short-lived. It establishes new flows on the new network,
but waits for the pre-existing flows on the old network to
terminate normally, up to a specific wait-time set by the
migration policy. The second mechanism, Resumption
Agent, leverages the resume function in modern servers and
resumes a flow from wherever it was disconnected, in a

2

manner transparent to applications. Based on our traces, we
show that using Wait-n-Migrate, we can successfully mi-
grate web flows for 90% and 95% of cases, for wait-time
values of 10 and 100 seconds, respectively. With the addi-
tion of Resumption Agent, we show that for web flows that
support resuming, we can virtually eliminate disruptions
when switching between networks.

Third, we report an efficient implementation of the
Wait-n-Migrate and Resumption Agent mechanisms on the
iPhone platform, and show that their overhead is negligible.
Based on the two system mechanisms, we further imple-
ment a sample network interface switching policy,
AutoSwitch. AutoSwitch uses Wait-n-Migrate and Re-
sumption Agent to offload data from cellular to Wi-Fi as
much as possible, with minimum disruptions to the user.
AutoSwitch using Wait-n-Migrate alone achieves over one
order of magnitude reduction in disconnections in our real-
life traces, e.g. from over 40% to well under 10% for 100
KB transfers while driving. Furthermore, when the content
supports resuming, disruptions are almost entirely elimi-
nated with the addition of Resumption Agent.

The rest of this paper is organized as follows. In Sec-
tion 2, we present a motivational user study to show that
brute force network switching is unacceptable to users, and
then discuss related work. In Section 3, we present the
characterization of network traffic on 27 iPhone 3GS users
and provide insight to the characteristics of network flows
on modern smartphones. Based on these findings, in Sec-
tion 4, we present the design and trace-based evaluation of
Wait-n-Migrate and Resumption Agent. In Section 5, we
report their implementation on iPhone and evaluate their
performance impact. In Section 6, we present an example
application, AutoSwitch, of the resulting seamless flow
migration without network support. Finally, we discuss
methods to further enhance our mechanisms for increased
performance in Section 7, and conclude in Section 8.

2. Background
2.1 Consequences of Brute-Force Switching

Without network support, smartphones switch between
networks (e.g. cellular and Wi-Fi) in a brute-force manner:
they terminate all application flows on the old network and
enables the new network. This behaviour is shared across
all the three major smartphone platforms we studied; iOS,
Android, and Windows Mobile1. It is then up to the appli-
cation, or often the user, to detect the disconnection and
retry over the new network This brute-force switch intro-
duces disruptions to interactive sessions. According to our
personal experience, network disruption is noticeably an-
noying, and particularly prevalent for large web pages or
during poor connectivity. To better understand the usability

1 The only exception was iOS and only when switching from cel-

lular to Wi-Fi, where it keeps existing connections indefinitely
on their original interface.

impact of network disruption (e.g. as will be experienced
due to brute-force switching), we performed a formal user
study with 10 participants from the Rice student commu-
nity who already used Internet-ready smartphones. The
study included an equal number of males and females and
four participants with non-engineering backgrounds.

Our study consisted of two parts. The first part asked
the users to open a copy of a regular news website cached
on our server for consistency. We then asked users to per-
form a number of text identification tasks on three individ-
ual pages. The participants were later directed to a cached
copy of a mobile news search engine, where they were
asked to identify several stories and their sources. During
the study, our server automatically disrupted the data flow
for the first load of three of the five page loads. The users
had to refresh their browser to completely load each page.
This simulated the impact of a brute-force migration. Par-
ticipants were free to either use their own phones or our
iPhone for the purpose of this study.

For the second part, we interviewed the participants to
assess their browsing experience, including several ques-
tions on a 1 – 5 Likert scale (agree – disagree), and several
open ended questions. All 10 participants agreed or some-
what agreed that disruptions are an annoying experience.
Interestingly, all 10 also agreed or somewhat agreed that
they have had similar experiences prior, and that they typi-
cally refresh a page that has failed to completely load.

During the open ended question sessions, when asked
whether they have experienced this phenomenon more of-
ten in specific web sites, 9 of 10 mentioned that they ex-
perience it more frequently with larger transfers, e.g. men-
tioning pages that are as “heavier” or “with lots of graph-
ics”. When asked whether they have experienced this phe-
nomenon more often in specific conditions, 8 of 10 cor-
rectly identified that they experience it more frequently
during one or more network conditions (e.g. low signal,
moving). We can see that even without intentional network
switching, users are subject to unwanted and annoying
network disconnections.

While our user study was conducted with a small num-
ber of participants (n=10), considering the high confidence
intervals, our findings are expected to be true with the ma-
jority of user populations similar to our participants. For
example, the 90% Agresti-Coull confidence interval [10]
for 8 and 10 positive answers out of 10 are (0.52 , 0.91) and
(0.66 , 1), respectively, i.e. there is a 90% chance that the
statistics for the population falls in those intervals.

In summary, we confirmed that network disruptions
annoy users. We also found that typical users have exten-
sive experience with network disruptions, and have even
figured out the conditions in which they often occur. A
successful solution to for network disruptions must not
blatantly change the user experience or discard the partially
received content. These findings motivate and assist both

3

the design of our mechanisms and our example application,
AutoSwitch.

2.2 Related Work
TCP/IP lacks built-in support for switching between

multiple networks (handoff) or aggregating their through-
put (multihoming). Therefore, there exists a body of re-
search on providing session continuity [11] between differ-
ent networks, i.e. maintaining the same IP address while
moving between networks. Current solutions for session
continuity fall into three categories. First is to have one
network as the slave to a master network, where all traffic
is directed through the latter [12], as in Virtual AP. How-
ever this requires unified management of the networks,
increases traffic on the master network, and increases la-
tency. The second category of solutions utilize a mobility
gateway in the infrastructure [13, 14], to act as a proxy be-
tween a mobile device and the Internet. For example, such
gateways have been employed for switching between inter-
faces (Wiffler [5]), for multihoming ([3, 4, 15]), and for
striping ([13, 16-23]). However, routing all flows through a
fixed gateway can increase the connection latency. The
third category of solutions modify or extend the TCP/IP
protocol support for mobility, e.g. by adding explicit sup-
port, as in [24, 25], or through Mobile IP [26-28], where a
home router or agent handles mobility and packet forward-
ing. However, the extra forwarding increases the traffic on
the home agent and more importantly, the extra distance
travelled by packets increases the connection latency. Mo-
bile IPv6 eliminates the need for a specific foreign agent,
but in return requires individual mobile nodes to perform
the forwarding operations, with similar drawbacks.

All three categories of solutions discussed above re-
quire additional infrastructure or network support, and thus
are not immediately deployable. Those that have begun
deployment suffer from limited or unsuccessful adoption.
Furthermore, these solutions increase network latency,
which is already known to be a major bottleneck in mobile
Internet performance [29]. In sharp contrast, we present and
evaluate two novel and complementary switching mecha-
nisms that can be fully implemented on mobile devices
without requiring network or application support, and with
insignificant additional latency. This allows our techniques
to be deployed immediately without changes to applica-
tions or infrastructure.

There are two solutions related to Resumption Agent.
Resuming static content is typically supported by download
managers such as wget. Yet, most other applications, e.g.
browsers, lack resume functionality. Snoeren et al. [29]
supported resumption through a client agent for the purpose
of failover between replica servers, while keeping servers
largely unchanged. In contrast, Resumption Agent is an
application agnostic solution for network switching and
provides automatic resuming capabilities for all pre-
existing applications. Furthermore, it can handle the chal-
lenges of dynamic content and secure HTTPS connections.

Recently Alperovich and Noble have proposed to im-
prove Wi-Fi performance for PC clients by switching and
balancing connections between multiple Wi-Fi access
points (APs), e.g., as enabled through Virtual Wi-Fi [30].
They also retain pre-existing connections on their original
AP, while assigning new connections to new APs. Yet, our
work focuses on smartphones and presents mechanisms for
switching between multiple, heterogeneous networks. We
go well beyond retaining pre-existing connections by ad-
dressing long-lived flows and supporting pre-existing ap-
plications on mobile phones.

Finally, there have been several studies addressing
smartphone usage and network traffic characteristics [32,
33]. Our contribution in traffic characterization compli-
ments these works, in particular for the purpose of migrat-
ing flows between networks, by providing detailed analysis
of traffic protocols, flow length and concurrency, and the
active application concurrent to the flows. These findings
are crucial for designing and evaluating the feasibility of
network migration.

3. Network Flow Characterization
A thorough understanding of the characteristics of

network flows on modern mobile devices is critical to the
seamless migration of flows. We next report a first-of-its-
kind study based on detailed network flow traces from 27
iPhone 3GS users. The characterization provides key in-
sights for our design, as described in Section 4.

3.1 iPhone Field Trace Collection
We gathered real-life network traces from 27 iPhone

3GS users over the course of 3 months by installing logging
software we developed, called LiveLab [34]. We chose the
iPhone because it represents the cutting edge of smartphone
design for usability, accounting for 55% of all mobile
internet traffic in the US as of October 2009 [35]. Addi-
tionally, iPhone users have access to the largest number of

Figure 1: Fraction of packets for each protocol (left), and
fraction of applications for UDP packets (right).

Figure 2: Fraction of TCP flows for each application type
(Left: non-interactive sessions. Right: interactive sessions,
i.e. phone display was on).

Fraction of all packets

TCP

ICMP

UDP

Fraction of UDP packets

Dropbox

NetBios

Skype

SSDP

Other

non‐interactive

other

http

https

email

local

interactive

other

http

https

email

local

4

third-party applications from the Apple App Store and nu-
merous third-party repositories.

Whenever the phone’s CPU is not asleep, LiveLab re-
cords TCP network connection statistics every two seconds
using the netstat tool, also available on Windows and
Linux/Unix platforms. Moreover, LiveLab records the ap-
plication being used and the display status in real time, and
Wi-Fi signal strength for the currently connected AP and
all visible APs every two seconds and 15 minutes, respec-
tively. Finally, it recorded the complete packet headers for
three of the participants over one month, in order to gauge
the data flow over UDP. We refrained from deploying this
packet-level logging for longer time or more users due to
its overhead. The data is recorded on the phones, and is
transferred nightly to our servers in a secure fashion.

While our participants were not recruited to accurately
represent the vast mobile user population, the data collected
from them provides an unprecedentedly detailed look into
the connectivity on contemporary mobile devices.

3.2 Focus on TCP Flows
The packet-level logging data shows that out of the

three common IP protocols in use TCP, UDP, and ICMP,
TCP flows present the main challenge towards flow migra-
tion. TCP, ICMP, and UDP account for 68%, 27%, and 5%
of all packets, respectively (Figure 1). While we will exam-
ine TCP flows in details later, we will first discuss ICMP
traffic and UDP flows.

ICMP packets are typically not used by interactive ap-
plications, but by devices to for diagnostics, device discov-
ery and error messages specific to each network. Therefore,
for the purpose of switching between networks, they can be
safely ignored.

UDP flows only contribute 5% of the total packets.
Yet, we analyze the UDP flows based on port numbers, and
further corroborate this analysis with the applications being
used. Notably, the phones were almost always listening to
all UDP ports. We have found the following services and
applications utilize UDP on the phones (Figure 1):

 Skype (92%) uses UDP ports 12340 and 20515.
 Dropbox (4%) uses UDP broadcast on port 17500
 Simple Service Discovery Protocol (SSDP) (2%) is

used to advertise and discover network services.
 NetBIOS (1%) for local area network device discovery

and networking
 Other (<1%) such as NAT Port Mapping

With the exception of Skype, all of these are network
and discovery services and specific to a particular network.
Therefore we will ignore them for the purpose of switching
between networks, similar to ICMP traffic. We will analyze
how Skype can be migrated to a different network in Sec-
tion 3.4.1. For the remainder of this paper, we will focus
exclusively on TCP flows unless mentioned otherwise.

3.2.1 TCP Flows
Using the port number of the server, we divide external

TCP flows into three categories:

 Web (HTTP: 80, HTTPS: 443): These are used by not
only the browser, but also by a number of native appli-
cations that utilize web services or a built-in browser.

 Email (IMAP: 143, 993, POP3: 110, 995, SMTP: 25,
465): These are used by the native email client, and
will not include email accessed through the browser.

 Other: All other applications and services.

Figure 3: Distribution of the number of concurrent TCP flows for different TCP ports, average among all users (Left: non-
interactive sessions. Right: interactive sessions.)

Figure 4: CDF of TCP flow lifetimes in seconds, based on TCP port, average among all users (Left: non-interactive sessions.
Right: interactive sessions.)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

all
other
http
https
email
local
http or https

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

all
other
http
https
email
local
http or https

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

all other

http https

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

all other
http https
email local

5

Figure 2 shows the fraction of TCP flows utilized for
each application during both interactive and non-interactive
usage. We use the display status (on) as an indicator of the
phone is being used interactively. We can see that more
than three quarters of TCP streams are web flows, high-
lighting the importance of handling them properly. We also
separate and ignore local (loopback) flows that reside only
on the phone.

Figure 3 and Figure 4 show the distribution of the
number of TCP flows and the CDF of flow lifetimes, re-
spectively, for both interactive and non-interactive sessions
among all users. We can see that flows have similar charac-
teristics during interactive and non-interactive usage, yet,
on average, flows during interactive usage have slightly
shorter lifetimes. In the following Sections, we will study
them in further detail, according to application use.

3.3 Flow Concurrency
While analyzing the LiveLab data, we were surprised

to discover that there are few concurrent flows on the
iPhone platform. However, there almost always exists one
particular flow, 97% of the time that the phone is awake.
We have identified that flow as Apple’s push notification
service, on port 5223. The median number of flows was 2
for both interactive and non-interactive sessions. Figure 5
shows the distribution of number of concurrent TCP flows,
excluding the Apple Push service, whenever the phone’s
CPU was running for the three port types presented in Sec-
tion 3.2.1 (web, email, other). We identified the top seven
applications that require Internet access using the data from

our field study, which include Pandora (music streaming)
and Skype (instant messaging, voice over IP). These appli-
cations account for over 95% of interactive phone Internet
use. Non-interactive usage, including when the display was
off, idle time, when the home screen was displayed are
presented separately. Other applications, including those
without specifically requiring internet connectivity, are
clustered together as others. For email and other ports, we
display only the applications that we have determined to
use those ports.

We can see that even when running internet enabled
applications, the phone is rarely engaged in multiple TCP
flows simultaneously. The small numbers of simultaneous
TCP flows shows that for web applications on mobile
phones, multihoming mechanisms (i.e. non-striping) are
effective for at most 20% of flows, as the other 80% of
times when a web flow exists, it is a single flow. However,
we expect this number to increase as more applications and
services on mobile devices become available. The mail
application, while not typically data intensive, presents an
exception, as it regularly uses multiple flows when active.

3.4 Flow Lifetime
We have found that most interactive flows on the

phone were short lived, and it is often possible to automati-
cally predict long-lived flows. We measure the flow life-
time without including the connection / teardown phase
(e.g. wait_fin). Our logs show a wide variation in the life-
time of TCP flows on the experimental phones, in particu-
lar between interactive and non-interactive usage sessions.

Figure 5: Distribution for the number of TCP flows when running different Internet applications. (Left): Web. (Center): Email.
(Right): other ports, excluding the Push Service.

Figure 6: CDF of TCP flow lifetimes (seconds), based on active application. (Left): web ports. (Center): email ports, (Right):
other ports.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

non‐interactive
all (interactive)
idle
other apps
facebook
safari
mail
pandora
maps
youtube
skype

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

non‐interactive

all (interactive)

idle

mail

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

non‐interactive
all (interactive)
idle
other apps
facebook
safari
mail
pandora
maps
youtube
skype

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

non‐interactive
all (interactive)
idle
other apps
facebook
safari
mail
pandora
maps
youtube
skype

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

non‐interactive
all (interactive)
idle
mail

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

non‐interactive
all (interactive)
idle
other apps
skype

6

Figure 6 shows, on average among our participants, the
CDF (cumulative distribution function) of TCP session
lengths for different TCP ports and different active applica-
tions, similar to Section 3.3

Our first finding is that most flows are short lived. In
fact, 50% and 44% of flows for non-interactive and interac-
tive sessions, respectively, are ~2 seconds or less. In turn,
this limits the effectiveness of power saving schemes which
rely on long-lived downloads, such as CatNap [36].

Our second finding is that it is possible to predict flow
lengths based on active application and port, i.e. the distri-
bution of flow lifetimes varies significantly based on TCP
port, active application, and whether the phone is being
used interactively. For example, as shown in Figure 6, the
fraction of short lived email flows (i.e., IMAP, SMTP,
POP3) is much lower: 30% and 20% for non-interactive
and interactive sessions respectively. Similarly, the Apple
Push service is known to be long lived. On the other hand,
as shown in Figure 6, TCP flows during web browser ses-
sions were shorter than average. We will later see how
these findings are important for our switching mechanisms.

3.4.1 Long-lived Non-Standard TCP Flows
We next consider long-lived flows that use non-

standard protocols, other than web, ftp, and email. Such
flows are difficult, if not impossible, to migrate without
network support. However, a close examination reveals that
such flows usually do not require migration support at all.

First, long-lived TCP flows based on closed applica-
tion protocols are usually from background, non-interactive
applications. Therefore, their disruption or brute-force mi-
gration will be unnoticeable to users.

More importantly, the handful of applications that util-
ize long lived non-standard protocols already provide sup-
port to migration in various forms because the application
developers anticipate the possibility of disconnection. For
example, applications such as Push notifications, Twidroid,
and many instant messaging applications are designed to
gracefully and automatically re-establish a connection after
being disconnected. Another example, Pandora, a common

Internet radio streaming application, and the only one that
appeared in our participants’ list of top 25 applications,
skips the unbuffered part of the current song, i.e. at most
suffer skipping part of a track. For yet another example, as
long as the primary interface in the system routing table is
correctly updated, e.g. as is the case with our mechanisms
or when the user manually enables or disables Wi-Fi,
Skype switches to the new network for both its TCP and
UDP connections, without dropping a call and with only a
very short period (~1 sec or less) of muting in the audio.
However, if the system is unaware of the disruption (e.g.,
moving out of Wi-Fi coverage), Skype will drop the call.
This highlights the importance of notifying applications
and the system of the network change.

3.5 Background Applications
While the iPhone 3GS we used in the study was the

state-of-the-art phone at its time, it lacks official support of
multitasking for third-party applications as of OS 3.x. Yet,
we expect that increased multitasking will not reduce the
usability and effectiveness of the Wait-n-Migrate and Re-
sumption Agent mechanisms. We note that Android and the
newly released iPhone iOS 4.0 allow background applica-
tions, e.g. Skype and Pandora, to access data networks [37].
This, alongside the increasing processing power and mem-
ory of phones, suggests an increase in the usage of back-
ground capable applications (e.g. instant messaging,
Twidroid). Therefore, we would expect to see an increase
in the number of simultaneous network flows, from those
shown in Figure 3 and Figure 5.

Assuming the device can remain connected to two
networks simultaneously, we can consider each application
independently for both Wait-n-Migrate and Resumption
Agent. Indeed, flows belonging to a certain application do
not impact other application flows. Therefore, an increase
in the number of multitasked applications will not affect the
general performance of our mechanisms.

4. Migration without Network Support
Based on the findings from Section 3, for the purpose

of migrating network flows between networks, we focus on

Figure 7: Flowchart for Wait-n-Migrate Figure 8: Wait-n-Migrate operation (Top), and the special

case without requiring simultaneous connectivity (bottom).

Switch Primary Interface
{update routing table, DNS}

Force All Flows to Migrate

Wait For TCP Flows to
Terminate Themselves

Analyze and Kill Appropriate
TCP Flows Immediately

Flows Automatically Restart
on New Interface

long life / idle flow
flow 3

flow 1
flow 2

Time

Switch
request Timeout

flow 4
flow 5

long life / idle flow

long life / idle flow

flow 1
flow 2

Time

Timeout

flow 3
flow 4

long life / idle flow

Switch
event

Switch
request

7

seamlessly migrating short lived flows or flows using stan-
dard protocols such as HTTP and FTP. We provide two
novel and complementary mechanisms for migrating such
flows without network support. We envision that in most
systems, Wait-n-Migrate will be used primarily, and Re-
sumption Agent will be used to migrate flows that were not
successfully migrated by Wait-n-Migrate.

4.1 Wait-n-Migrate
Our first method leverages the fact that most flows are

short lived, as seen in Section 3. Wait-n-Migrate typically
requires the device to be able to connect to multiple net-
works simultaneously. This may be through multiple inter-
faces (e.g., 3G and Wi-Fi) or through one interface (e.g.,
multiple Wi-Fi networks through Virtual Wi-Fi [31]).

In order to migrate one or more flows between two
networks, Wait-n-Migrate operates as follows (Figure 7).
First it enables both networks so the system has simultane-
ous connectivity to both. Second it ensures all new flows
are created on the new network. Then it waits for the flows
on old network to terminate naturally, up to a specific wait-
time (Figure 8). The wait-time for each flow is a parameter
determined by the particular migration policy and can be
set according to application, bandwidth, and power consid-
erations, and may be adaptive according to flow character-
istics presented in Section 3. Different wait-time values can
be used for switching to different networks. For example,
when the system policy requests a network switch to a
slower or less efficient network, e.g. in order to assure con-
nectivity, the wait-time can be set to infinite, i.e. until los-
ing connectivity. On the other hand, when switching back
to the faster / more efficient network, a shorter wait-time
should be used. Finally, if there are no remaining flows on
the old network, the system can disable or power it off al-
together.

When the system cannot be connected to both net-
works simultaneously, a special case of Wait-n-Migrate can
be used. This special case takes advantage of the fact that
that most TCP flows are short lived. It monitors TCP flows
and attempts to choose the best moment to switch within a
specifically allowed time range, in order to minimize dis-
ruptions. This is possible through the statistical properties
of TCP flows, as presented in Section 3.

Finally, Wait-n-Migrate can employ flow lifetime pre-
diction to further improve its effectiveness and efficiency.
Wait-n-Migrate does not interfere with short-lived flows in
order to avoid user disruption. However, for flows that are
known to be highly likely to live beyond the wait time, e.g.
based on the findings in Section 3, Wait-n-Migrate can
terminate them immediately. For example, we already
know that several types of flows are long lived, e.g., Push
notifications and idle email flows. If the device is switching
to a faster or more energy-efficient network, Wait-n-
Migrate can terminate such flows immediately, thus im-
proving performance.

4.2 Resumption Agent
Our second method, Resumption Agent, leverages the

fact that many interactive applications use standard applica-
tion layer protocols such as HTTP, HTTPS, as highlighted
in Section 3.2, and that most servers for these protocols
support resume. Resumption Agent is a locally run proxy
that enables flow migration for most such flows. It provides
a safety net to reduce the user impact of network switching
when Wait-n-Migrate terminates a flow for migration. With
Resumption Agent, Wait-n-Migrate can be more aggressive
in migrating flows and therefore allow for faster switching.

Resumption Agent can support any application that al-
lows resuming from a specified location in the transfer.
Several key standard application-layer protocols, including
HTTP and FTP, provide adequate support for resumption
of a terminated transfer. For example, the HTTP standard,
from version 1.1 onwards (1996), supports specifying a
range when requesting a web page. The FTP standard also
supports resuming via the rest command. Standard email
protocols (e.g. IMAP, POP, and SMTP) can also be re-
started from the beginning of any email, or any individual
attachment in the case of IMAP.

Resumption Agent works as follows. It requires a
background service running only on the device itself, which
acts as a proxy, and modifies the phone settings so that
applications use this proxy to connect to the internet. If a
flow is disconnected prematurely, Resumption Agent
automatically resumes the transfer from where the flow was
cut off. Therefore, when a flow needs to migrate to a new

Figure 9: Regular proxy operation and Resumption Agent
man-in-the-middle operation for a browser application

Regular Proxy or
Migration Agent

HTTPHTTP

Browser server.com

HTTP

Regular Proxy HTTPS

Browser

server.com
certificate signed
by trusted CA

server.com

Regular HTTPS

Resumption
Agent

HTTPS

Resumption Agent, man‐in‐the‐middle HTTPS

Browser server.com

server.com
certificate signed
by Resumption

Agent

server.com
certificate signed
by Trusted CA

Phone

8

network, it can be terminated on the old network and re-
sumed on the new network in transparent manner to the
application. Finally, Resumption Agent can employ flow
lifetime prediction to further improve its effectiveness and
efficiency. For web flows, their sizes are typically know at
the beginning of the transfer, through the HTTP header
response Content-Length. If Resumption Agent is used in
conjunction with Wait-n-Migrate, the content length and
bandwidth can further assist in determining whether to kill
flows immediately or wait for them to terminate normally.

We note that download managers, such as wget, sup-
port the automatic resuming of static content. Yet, they are
unable to handle the challenge of unsupported content, as
discussed in 4.2.1. More importantly, web browsers (on
both PCs and phones), and most other applications (e.g. the
iPhone YouTube application) lack automatic resuming
functionality. In contrast, Resumption Agent is application
agnostic and appears as a regular proxy server to applica-
tions, thus providing a system level solution for all pre-
existing applications. Moreover, Resumption Agent can
handle network migration and two non-trivial challenges to
Resumption Agent for web flows, posed by unsupported
content and encrypted HTTPS flows. We next discuss them
and present our solutions.

4.2.1 Unsupported Content
There are three groups of content that cannot be re-

sumed in the middle of the transfer.

(i) The first group includes content that does not allow
resuming. For example, some servers may ignore HTTP
Range requests altogether or for specific content, such as
small transfers, or chunk encoded data (the size of the data
is not known beforehand). In this case, the transfer, if inter-
rupted, must be restarted from the beginning, resulting in a
second and unnecessary transfer of the initial portion,
which the Resumption Agent will ignore.

(ii) The second group is content uploads, usually using
HTTP POST, in which there is always the risk of repeating
an action, e.g. a purchase. In such cases, such as when the
user refreshes a page with POST content, web browsers
present the user with a warning. Resumption Agent uses the
same behaviour and will avoid automatically resuming
such a transfer if it is disconnected.

(iii) The third group is dynamic content that changes
significantly for every reload. Resumption Agent deals with
dynamic content using two methods. First, the HTTP head-
ers Pragma:no-cache and Cache-Control:no-cache in the
request and response headers, respectively, indicate dy-
namic content, as the prevent proxies and other web servers
from caching the content. Thus, if Resumption Agent sees
these tags, it can abstain from automatically resuming a
failed transfer. Second, in order to support dynamic content
that does not provide hints in the headers, Resumption
Agent always resumes from a preset length prior to the
disruption. It then compares the overlapping sections. If the

overlapping sections are identical, Resumption Agent will
simply continue with the resume. If the overlapping sec-
tions become identical after applying a small offset to the
data, e.g. to account for a slightly smaller or larger dynamic
advertisement content, it will correct the offset and can
continue with the resume. Only if the overlapping sections
are not identical even after applying an offset, will Re-
sumption Agent abort the resume and the transfer will fail.

4.2.2 Encrypted HTTPS Flows
A greater challenge comes from HTTPS, as it is im-

possible for a proxy to directly inspect its contents, which
is end-to-end encrypted by SSL. Indeed, when an applica-
tion wants to connect to a HTTPS server through a typical
proxy, it sends a CONNECT command to the proxy. The
proxy, upon validating the eligibility request, will create a
tunnel to the requested server, without touching the trans-
ferred content. Such a configuration, with end-to-end en-
cryption would make it impossible to analyze the data, nec-
essary for transparently resuming or striping transfers.

Resumption Agent employs a novel and elegant two-
part solution to this challenge. First, it will exploit a man-
in-the-middle attack. That is, as shown in Figure 9, Re-
sumption Agent presents itself to the client as the destina-
tion server. It then connects to the destination server, and
therefore has access to the transferred stream, and can per-
form the same functionality it does for HTTP. We note that
the open source web proxy, squid, has built-in support for
such man-in-the-middle operation [38].

Figure 10: Performance of Wait-n-Migrate (top) and
the special case without simultaneous network connec-
tivity (bottom), measured as the percentage of flows
successfully migrated to the target network, for differ-
ent timeout values using our field-collected traces.

0%

20%

40%

60%

80%

100%

1 10 100 1000

http

https

http or
https

email

other

0%

20%

40%

60%

80%

100%

1 10 100 1000

http

https

http or
https

email

other

9

A standard man-in-the-middle attack by a third party
is, however, unable to present the correctly signed certifi-
cate to the client application, and depending on system
policies, it typically raises a warning to the user. Changing
system policies to ignore security certificates would open
the door to any man-in-the-middle attack, and is therefore
unacceptable. Indeed, in order to maintain security, the
certificate check must be strictly enforced.

The second part of our solution addresses this chal-
lenge. All computer systems, including our iPhones, de-
pend on a number of preinstalled Certificate Authorities
(CAs) to sign and validate all server certificates. Since Re-
sumption Agent is not a third party, it can install its own
local CA on the device, without compromising security.
This is possible on the iPhone [39] as well as other plat-
forms. Resumption Agent can then sign the certificates it
presents to applications, preventing them from displaying
warning messages. Resumption Agent has to create a new
certificate once for each HTTPS domain the user accesses.
We have measured the overhead of certificate generation
on the iPhone 3GS to be on average 1.7 seconds, with a
standard deviation of 1.2 seconds, measured over 100 ex-
periments. Furthermore, to completely avoid this latency,
the device can use the typical CONNECT command the
first time the user accesses a new site, but generate the cer-
tificate for subsequent accesses.

When connecting to a server, Resumption Agent veri-
fies the security certificate of the server instead of the ap-
plication (e.g. browser). In order to maintain security, Re-
sumption Agent (instead of the application) displays a
warning to the user if a server’s certificate is not correctly
signed. The user can then decide whether to continue or
forgo a potentially unsecure connection. In order to main-
tain security it is imperative to strictly enforce the certifi-
cate verification between clients and servers. We conjecture
that a consistent warning for invalid certificates may be
more understandable to end users than application specific
warnings. Therefore, Resumption Agent can in fact reduce
bad decisions by users and increase security.

4.3 Trace-Based Evaluation
In this section, we demonstrate the efficacy of Wait-n-

Migrate and Resumption Agent using our field collected
traces of real-life usage.

To evaluate Wait-n-Migrate, we calculate the percent-
age of flows that are successfully transferred between net-
works for different wait-time values, assuming a time uni-
form probability of the system attempting a switch. To
evaluate Resumption Agent, we measure the feasibility of
resuming video streaming and browsing, and show that
both YouTube and the majority of the websites participants
most commonly visited indeed support resuming.

4.3.1 Wait-n-Migrate
As mentioned in Section 4.1, Wait-n-Migrate requires

both networks/interfaces to be connected simultaneously, at
least for the duration of the migration. For this evaluation,
we assume the device intends to migrate all existing flows
to a new network. We have used our traces to calculate the
percentage of flows that Wait-n-Migrate can successfully
migrate to the new network without disruption, shown in
Figure 10. For example, Wait-n-Migrate successfully mi-
grates all web flows for 90% and 95% of cases for wait-
time values of 10 and 100 seconds, respectively.

As discussed in Section 4.1, there is a special case of
Wait-n-Migrate that is employed when the system can only
remain connected to one network, which waits for the mo-
ment where there are no ongoing flows to switch the net-
work. For our evaluation, we assume that this special case
waits for the moment when there are no web flows to
switch between networks. We have used our traces to cal-
culate the percentage of flows that the special case of Wait-
n-Migrate can migrate to the new network without disrup-
tion in this manner, shown in Figure 10. Since our policy
does not wait for presumably non-interactive flows (i.e.
non-web) to end, we can see a significantly larger number
of disconnections for those flows. Yet, the special case of
Wait-n-Migrate performs relatively close to Wait-n-
Migrate for web flows, as there are rarely multiple web
flows in our traces, as shown in Section 3. However, we
believe that increased complexity and multitasking in fu-
ture applications will increase the performance difference
of Wait-n-Migrate and its special case.

4.3.2 Resumption Agent
We have studied the applicability of Resumption

Agent for two important applications, the web browser and
the YouTube application.

We have tested YouTube and it is fully supported by
Resumption Agent; the stream is based on standard HTTP

Figure 11: Non-static web pages often have the same or
similar content lengths: CDF of the length differences of
two consecutive downloads (among the top 100 pages ac-
cessed by our users)

85%

90%

95%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8%

%
 o
f h

o
m
ep

ag
e
h
tm

l f
ile
s

% length difference between two consecutive downloads
Figure 12: Most web pages and all of their embedded con-
tent (among our top 100 pages) are supported by Resump-
tion Agent

0%

20%

40%

60%

80%

100%

web page embedded content

1% length difference

same length

static

partial resuming

10

protocols and our experiments show that YouTube servers
indeed support resuming videos at an arbitrary location.

We evaluate the applicability of Resumption Agent for
web browsing by identifying whether it can be effective for
the top 100 websites our users have visited. We used our
user study logs to generate the list of top 100 websites our
users visit. For each of these 100 sites we measure the re-
sume capability of the website’s homepage and its embed-
ded media (e.g. images). We test the homepages (i.e. top
page) since we found that many deeper, pages may depend
on previous state information, e.g. a specific referrer, cook-
ies, or user login). We crawl these sites both as an iPhone
browser and as a desktop browser, set through the User-
Agent HTTP header. Every crawl, we download each item
three times, twice in full, and once from the middle of the
transfer to determine 1) if the item supports resuming, and
2) if the item is static. We present the results for the iPhone
and desktop browsers together, since they were similar.

As shown in Figure 12, we found that 100% of embed-
ded media is static and therefore supported by Resumption
Agent. 91% of those support resuming from the middle of a
transfer; i.e. without the need to re-transfer the already
transferred part. Among the HTML homepages, 57% were
static, and 9% had the same content length between our two
consecutive downloads, but had slightly different content.
Furthermore, most others had content lengths very close to
each other. Figure 11 shows the Cumulative Distribution
Function (CDF) for the length differences between two
consecutive downloads for our top 100 pages. We can see
that another 30% had content lengths within 1% of each
other. Therefore, we expect them to be supported by Re-
sumption Agent, as described in Section 4.2.1. We note that
only 16% of the HTML pages can be resumed from the
middle of the transfer, vs. 89% of the embedded content.
The remaining pages that do not support HTTP resume
functionality incur an extra overhead of re-downloading the
already transferred part, but can still be resumed transpar-
ently to the application.

Finally, while none of the embedded content used
HTML tags to disallow caching, we observed that 30% of
the HTML pages were marked as such. However, of the
HTML pages that disallowed caching, 36% in fact had
static content, and 44% had content with the same length.
Therefore, we conjecture that the no-cache response header
may possibly be ignored by Resumption Agent.

5. iPhone 3GS based Implementation
We implemented both the Wait-n-Migrate and the Re-

sumption Agent mechanisms on the iPhone platform and
measured their system overhead to be negligible. While the
iPhone is a closed platform, a jailbreak has been consis-
tently available, making it possible to develop low-level
system software and implement these mechanisms.

We have constrained our solution to support legacy
applications. The methods we have used, e.g. to acti-

vate/deactivate network interfaces, are supported on every
major OS without kernel modification, however some im-
plementation details are OS specific, as described below.

5.1 Wait-n-Migrate
The implementation of Wait-n-Migrate realizes four

functions: monitoring flows, selecting the primary network
interface, terminating individual TCP flows, and disabling
a network interface:

(i) Flow Monitoring: An intelligent network switching
policy requires detailed knowledge of flow properties. For
example, it may want to force the migration of high band-
width flows with long durations immediately while switch-
ing to Wi-Fi. Towards this end, Wait-n-Migrate continu-
ously records flow statistics, such as application, duration,
destination, and bandwidth, for all flows. This information
is reported in real-time, as well as kept in a database which
is made available to the switching policy.

(ii) Selecting Primary Network: The implementation of
Wait-n-Migrate depends on the ability to modify the sys-
tem’s routing tables to direct all new flows through the new
network. The routing table consists of a set of prioritized
rules dictating which interface and gateway to use for es-
tablishing outgoing sockets. All common operating sys-
tems have a routing table which they allow to be modified
through well documented system calls. While it is possible
to directly modify the routing table on the iPhone, we
found that any modification to the primary default gateway
triggered the system to reset the routing table. Instead we
were able to use the scutil command to change the priority
of the networks; this in turn automatically changes the rout-
ing table appropriately, as well as the DNS settings, and
sends a system wide notification of the network change (as
it typically does when switching interfaces). The overhead
for invoking a switch is quite small, as it simply changes a
system setting, and takes less than 300ms to complete.
scutil is an OSX specific tool, though other OSs provide
proprietary methods to select the primary network inter-
face. Conveniently, the iPhone does not disable the cellular

Establish Connection to Server
Forward Client Headers
Forward Server’s Reply Headers to Client
While download_unfinished && tries < MAXRETRIES {

Forward CHUNKSIZE bytes of data
If disconnect_signaled
 Disconnect connection to server
If disconnected && eligible for resume
 Reconnect to server
 Forward original headers
 If server supports ranges
 Request range starting at prior to disconnect
 else
 Download and discard previously downloaded data
Tries++

}
Close sockets

Figure 13: Pseudocode for Resumption Agent

11

interface while Wi-Fi is connected, as some platforms, such
as Android, do. This, however, does not have a power im-
pact as the phone must leave the cellular interface on in
order to receive calls.

(iii) Terminating Flows: As previously mentioned, it
may be necessary to force the migration of specific flows,
such as those that are known to be of long duration. We
have achieved this by porting tcpkill to the iPhone platform.
tcpkill has been ported to all major kernels, including Dar-
win, Windows, FreeBSD, OpenBSD, HP-UX, AIX, So-
laris, and Linux. tcpkill uses libpcap and libnet to de-
tect/monitor the TCP stream and inject a TCP RST packet
which kills the connection. When the application recon-
nects it is automatically routed through the new network.

(iv) Disabling Network: Wait-n-Migrate provides a
mechanism to disable the entire network being migrated
from. This can be useful after individual flows have been
appropriately dealt with, or none of the flows require spe-
cial treatment, depending on policy. Every major OS has
methods to disable network interfaces. For UNIX based
OSs this is typically “ifconfig interface down”. Unfortu-
nately this method currently does not work on the iPhone,
however similar functionality can be achieved through the
scutil or ipconfig commands. Additionally, low level ioctl
calls can also accomplish this behaviour.

5.2 Resumption Agent
We implemented Resumption Agent in 1400 lines of C

code; it can be built and run on any POSIX compliant sys-
tem, including Linux and iOS. Resumption agent is similar
to other proxies, such as squid, in that it acts as a relay
point for Internet communication between clients and serv-
ers, complies with HTTP 1.0/1.1 specifications, and han-
dles multiple concurrent connections.

Our implementation (Figure 13) leverages standard
UNIX sockets and multithreading. When Resumption
Agent starts it initializes a pool of worker threads, using
libpthread, to handle concurrent requests. Each thread han-
dles one request at a time, however more threads can be
dynamically created to handle heavy loads. Creating the
threads in advance reduces latency for handling incoming

requests. Next the agent uses the listen() command to start
listening on a predefined TCP port, such as 8080, for in-
coming connections.

When a new incoming client connection is received,
Resumption Agent uses the connection’s file descriptor to
hand the request to a worker thread. The worker thread then
uses asynchronous non-blocking UNIX IO, read_nio(),to
read from the connection. It parses the client headers, then
establishes a connection to that server and forwards the
client's request headers to the server. When the server be-
gins answering the request, the worker thread forwards the
data back to the client. We note that for each transfer, Re-
sumption Agent only has to process the header data; every-
thing else is simply forwarded without processing over-
head, minimizing any performance impact. Furthermore, in
order to reduce CPU usage and bandwidth without increas-
ing latency, the worker threads employ a large read size of
2KB, or the amount of data available in the system queue,
from the server before forwarding it to the client.

The socket() implementation usually allows a socket
timeout option to be specified, to report a disconnection if
no data has been sent after the specified timeout. Unfortu-
nately, while the iPhone appears to implement this option,
it failed to function. Thus, we implemented our own time-
out detection, with the same behaviour. If a timeout is de-
tected, or the socket throws any error, the worker thread re-
establishes a connection to the server and attempts to re-
sume the transfer where it left off. The worker will retry up
to a predefined number of times, by default 50, before giv-
ing up; this keeps the worker from running infinitely, and
potential flooding the network, if the server or network
becomes unavailable for an extended period of time.

We have measured the performance impact of Re-
sumption Agent to be minimal in normal usage. In particu-
lar, Resumption Agent consumes less than 300 KB of
memory, and it increases linearly with the number of con-
current transfers. Its mean CPU consumption is negligible
when idle, and 3 – 4% when actively handling transfers.
Most importantly, we have measured the additional latency
introduced by the Resumption Agent to be statistically in-
significant over 200 test runs.

Figure 14: Probability of disconnection vs. Wi-Fi signal
strengths

0%

20%

40%

60%

80%

100%

40 50 60 70 80 90 100

P
ro
b
ab

ili
ty
 o
f

D
is
co
n
n
e
ct
io
n

Signal Strength (‐dB) Figure 15: AutoSwitch significantly reduces the expected
number of disruptions in 1120 hours of interactive usage
traces with Wi-Fi enabled, for different wait-time values

0 50 100 150 200 250

NO AutoSwitch

brute force

Wait‐n‐Migrate, 10s

Wait‐n‐Migrate, 30s

Wait‐n‐Migrate, 100s

Expected # of failures

12

6. Example Application: AutoSwitch
In order to evaluate the combined effectiveness of the

Wait-n-Migrate and Resumption Agent mechanisms, we
have developed AutoSwitch, an automatic network inter-
face switching policy. AutoSwitch attempts to offload data
from cellular to Wi-Fi as much as possible, with minimum
disruptions to the user. AutoSwitch solves a common com-
plaint about Wi-Fi [40] – that it is unreliable or unusable at
low signal levels, such as while the user is moving in and
out of coverage areas. To achieve this goal, AutoSwitch
intelligently switches between wireless networks using
Wait-n-Migrate and Resumption Agent, before losing con-
nectivity (e.g., due to mobility). We note that other solu-
tions have been proposed to offload cellular traffic on Wi-
Fi, e.g. [5], but they typically rely on a mobility gateway /
proxy to handle network switches, with inherent latency
and deployability drawbacks as discussed in Section 2.2.

6.1 AutoSwitch Design
AutoSwitch attempts to migrate TCP flows from Wi-Fi

to cellular before Wi-Fi coverage is dropped or Wi-Fi be-
comes unreliable, and migrate back to Wi-Fi when a reli-
able Wi-Fi connection becomes available again. For sim-
plicity, and without losing generality, we assume that cellu-
lar coverage is always available.

Often, in particular for the case of mobility, switching
between networks occurs due to forced disconnections. For
example, a phone may switch from 3G to a Wi-Fi network
when Wi-Fi becomes available, but move out of Wi-Fi
coverage shortly afterwards; thus the phone is forced to
switch back to 3G. In such a case, it is too late to effec-
tively use Wait-n-Migrate. However, previous work shows
that it is indeed possible to accurately predict network con-
ditions, and therefore initiate the network switch before
losing coverage. For example, Breadcrumbs [41] and our
previous work [42] predict network conditions for the near
and far future, respectively. As our main focus is on flow
migration and not on the switching policy, we use a simple
yet effective predictor, signal strength [8, 43], to initiate a
network switch before losing Wi-Fi coverage completely.

In order to determine the policy for switching to and
from Wi-Fi, we extended LiveLab for three iPhone 3GS
users for three weeks to continuously test and record net-
work disconnections, measured by the ping tool. These
three users acted as a sampling tool to measure Wi-Fi reli-
ability at different signal strengths, collecting over 1 mil-
lion connectivity tests, shown in Figure 14. We define a
Wi-Fi connection as disconnected if all ping tests over a
period of 5 seconds are lost, regardless of the reported sig-
nal strength. We can see that Wi-Fi starts to become unreli-
able starting at approximately -82 dBm on iPhone 3GS.

Based on these results, we employ a simple hysteresis
over both time and signal strength to reduce erroneous
switching. AutoSwitch, using Wait-n-Migrate and Resump-
tion Agent, switches to cellular when a Wi-Fi signal level
of -75 dBm or less is maintained over 3 seconds, and
switches back to Wi-Fi when Wi-Fi signal strength reaches
-70 dBm.

6.2 Trace-based Evaluation
We have used the traces from LiveLab to evaluate the

efficacy of AutoSwitch using Wait-n-Migrate, during rou-
tine interactive usage. As mentioned in Section 6.1,
LiveLab provides us with continuous signal strength meas-
urements, but not connectivity measurements. We utilize
the Wi-Fi signal strength measurements and the probability
of disconnection at different signal levels, presented in Fig-
ure 14, to calculate the expected number of disruption in a
web application. We further assume that if Wi-Fi is not
disconnected at a specific signal level in a particular usage
session, it will not be disconnected at that signal level for
the entire session.

We present the expected number of disconnections for
AutoSwitch using Wait-n-Migrate, with wait-times of 10,
30, and 100 seconds, respectively, in Figure 15. We com-

 Figure 16: Map of paths travelled in Rice University, for
walking (1 km, Blue loop) and driving (3 km, Red loop) sce-
narios

Figure 17: AutoSwitch significantly increases the success rate
of 10KB, 100KB, and 1MB transfers when walking (top) and
driving (bottom) on Rice Campus

0%

20%

40%

60%

80%

100%

10 KB 100 KB 1 MB

Su
cc
e
ss
 r
at
e

Transfer size

AutoSwitch using
Resumption Agent
& Wait‐n‐Migrate

AutoSwitch using
Wait‐n‐Migrate

no AutoSwitch

0%

20%

40%

60%

80%

100%

10 KB 100 KB 1 MB

Su
cc
e
ss
 r
at
e

Transfer size

AutoSwitch using
Resumption Agent
& Wait‐n‐Migrate

AutoSwitch using
Wait‐n‐Migrate

no AutoSwitch

13

pare it with two cases, one where Wi-Fi is left on (no
AutoSwitch), and another case where AutoSwitch switches
between networks in a brute force manner, without utilizing
Wait-n-Migrate.

Using 1120 hours of interactive usage traces with Wi-
Fi enabled, for web usage, the users were expected to ex-
perience 213 disruptions without AutoSwitch. Employing
AutoSwitch using Wait-n-Migrate and a constant wait-time
of 10, 30, and 100 seconds, users were expected to experi-
ence 80%, 87%, and 91% fewer disconnections, respec-
tively (Figure 15). In contrast, AutoSwitch with brute force
switching, i.e., without Wait-n-Migrate, slightly increases
disconnections to 246, due to false positives.

We must note that users indeed take note of the mobil-
ity and coverage limitations of Wi-Fi, as confirmed by our
motivational user study from Section 2.1 and prior work
[40]. Therefore, they may turn off Wi-Fi altogether in con-
ditions they know it is prone to failing. Hence, we expect
that the results in this section, obtained from the traces
when Wi-Fi was enabled, underestimate the potential bene-
fit from AutoSwitch using Wait-n-Migrate.

6.3 Field Evaluation
We further evaluate AutoSwitch using both Wait-n-

Migrate and Resumption Agent on the iPhone platform. For
performance evaluation we wrote a script to automatically
download a predetermined file over HTTP, from a server
that supports resuming, every five seconds. We tested
AutoSwitch using transfer sizes of 10 KB, 100 KB, and
1MB, as well as Wait-n-Migrate alone. We then measured
the number of transfers that were fully completed without
errors over two predetermined paths in Rice University,
shown in Figure 16; 1) while walking commonly used
paths, and 2) while in a car travelling at approximately 30
km/h along campus roads. The walking path was approxi-
mately 1 km long, included indoor areas in two buildings,
crossed distinct areas with good to excellent Wi-Fi connec-
tivity (-70 dBm signal strength or more), and was covered
approximately 95% of the time by a Wi-Fi signal. The driv-
ing path was approximately 3 km long and only had one
area of good Wi-Fi signal strength, but still had about 80%
Wi-Fi coverage. Each test run lasted approximately one
hour, and included over 1000 transfer attempts.

The success rates of transfers, as observed by our
script, are shown in Figure 17. As expected, due to Wi-Fi
signal variations, there are a significant number of failed
transfers without AutoSwitch. Using AutoSwitch in con-
junction with Wait-n-Migrate significantly reduced the
number of disruptions. Furthermore, since the server sup-
ported resuming, Resumption Agent, used in conjunction
with Wait-n-Migrate, was able to further reduce disrup-
tions, completely eliminating them while walking, and in-
creased the success rate while driving to over 95–99% for
different file sizes.

7. Discussion
Our work focuses on providing system mechanisms for

migrating flows between networks. Various policies have
been proposed to switch between or aggregate networks.
AutoSwitch is one such policy, and unambiguously demon-
strates the effectiveness of Wait-n-Migrate and Resumption
Agent in supporting seamless flow migration. The system
mechanisms we have presented here can also be utilized to
enable the immediate deployment of many performance
and efficiency-enhancing policies studied in the literature,
without practical deployment issues:

Multihoming / Load Balancing: When used for load
balancing and multihoming, Resumption Agent has the key
advantage of knowing the length of a flow at its very early
stages, through the HTTP response headers, as well as the
properties and conditions of the available networks. This
allows Resumption Agent to intelligently allocate each
flow on the appropriate network interface.

Striping: Resumption Agent can support striping larger
transfers, i.e. download different parts of the transfer simul-
taneously through different networks, as long as the content
supports resuming. Resumption Agent can be extended to
download separate chunks over each interface and then
amalgamate these chunks before sending them to the client.
For striping content that contains dynamic parts, as de-
scribed in Section 4.2.1, it is necessary to ensure the dy-
namic portions are downloaded in single chunks.

Mirroring: For pages that do not support striping, or
that are very small compared to the latency, Resumption
Agent can be extended to simultaneously request the same
page on multiple networks, and return whichever finishes
first. While this method is not power-efficient, it can pro-
vide substantial reduction in user perceived latency, espe-
cially under highly varying network environments.

Preemptive Network Switching: When Resumption
Agent is aware of an impending network switch, it can es-
tablish a connection over the new network and request the
remaining portion of the flow, before killing the existing
flow. This allows the Resumption Agent to further mini-
mize the latency incurred when resuming a flow.

8. Conclusion
We presented a first-of-its-kind characterization of IP

traffic on modern smartphones using traces collected in
real-life usage of 27 iPhone 3GS users over a period of
three months. We show that the traffic is almost exclusively
TCP, and TCP flows are often short-lived and rarely con-
current for interactive applications.

Driven by these findings, we devised two novel and
complementary system mechanisms to migrate TCP flows
between networks without network or application support:
Wait-n-Migrate and Resumption Agent. While Wait-n-
Migrate significantly decreases, or even eliminates
connectivity gaps when switching between networks,

14

Resumption Agent opportunistically resumes flows across
connectivity disruptions and network switches. Combined,
these two system mechanisms mitigate, and in many cases
eliminate, the impact of widely varying network conditions
on mobile applications, as we demonstrate using our im-
plementation, AutoSwitch. The seamless flow migration
without network support collectively enabled by Wait-n-
Migrate and Resumption Agent allows for immediate de-
ployment of performance and efficiency-enhancing poli-
cies, including multihoming and traffic offloading.

References
[1] Rahmati, A. and Zhong, L. Context-for-Wireless: Context-Sensitive

Energy-Efficient Wireless Data Transfer. Proc. Int. Conf. Mobile
Systems, Applications and Services (MobiSys). 165-178, 2007.

[2] Qadeer, W., Rosing, T.S., Ankcorn, J., Krishnan, V. and De Micheli,
G. Heterogeneous Wireless Network Management. Proc. Wksp. on
Power Aware Computer Systems (PACS). 86-100, 2003.

[3] Thompson, N., He, G. and Luo, H., Flow scheduling for end-host
multihoming. in IEEE INFOCOM, Citeseer, 2006.

[4] Kandula, S., Lin, K.C.-J., Badirkhanli, T. and Katabi, D. FatVAP:
aggregating AP backhaul capacity to maximize throughput. Proc.
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2008.

[5] Balasubramanian, A., Mahajan, R. and Venkataramani, A.
Augmenting Mobile 3G Using WiFi. Proc. Int. Conf. Mobile
Systems, Applications and Services (MobiSys), 2010.

[6] Han, B., Hui, P., Kumar, V., Marathe, M., Pei, G. and Srinivasan, A.
Cellular Traffic Offloading through Opportunistic Communications:
A Case Study. Proc. ACM Int. Wrkshp. Challenged Networks
(CHANTS), 2010.

[7] Pering, T., Agarwal, Y., Gupta, R. and Want, R. CoolSpots:
Reducing the Power Consumption of Wireless Mobile Devices with
Multiple Radio Interfaces. Proc. Int. Conf. Mobile Systems,
Applications and Services (MobiSys). 220-232, 2006.

[8] Giannoulis, A., Fiore, M. and Knightly, E.W. Supporting vehicular
mobility in urban multi-hop wireless networks Proceeding of the 6th
international conference on Mobile systems, applications, and
services, ACM, Breckenridge, CO, USA, 2008.

[9] Lai, A. and Nieh, J. Limits of wide-area thin-client computing.
SIGMETRICS Perform. Eval. Rev., 30 (1). 228-239, 2002.

[10] Agresti, A. and Coull, B.A. Approximate Is Better than "Exact" for
Interval Estimation of Binomial Proportions. The American
Statistician, 52 (2). 119-126, 1998.

[11] Gustafsson, E. and Jonsson, A. Always Best Connected. IEEE
Wireless Communications, 10 (1). 49-55, 2003.

[12] Pahlavan, K., Krishnamurthy, P., Hatami, A., Ylianttila, M., Makela,
J., Pichna, R. and Vallstron, J. Handoff in hybrid mobile data
networks. IEEE Personal Communications, 7 (2). 34-47, 2000.

[13] Maltz, D. and Bhagwat, P., MSOCKS: An architecture for transport
layer mobility. in IEEE INFOCOM, Citeseer, 1037-1045, 1998.

[14] Chalmers, R. and Almeroth, K., A mobility gateway for small device
networks. in IEEE PerCom, Citeseer, 2004.

[15] Sharma, P., Lee, S., Brassil, J. and Shin, K., Handheld routers:
Intelligent bandwidth aggregation for mobile collaborative
communities. in IEEE BroadNets, Citeseer, 2004.

[16] Pucha, H. and Hu, Y. Overlay TCP: Ending end-to-end transport for
higher throughput. Poster in ACM SIGCOMM, 2005.

[17] Hsieh, H. and Sivakumar, R. pTCP: An end-to-end transport layer
protocol for striped connections. Proc. IEEE ICNP, 2002.

[18] Han, H., Shakkottai, S., Hollot, C., Srikant, R. and Towsley, D.
Overlay TCP for multi-path routing and congestion control.
IEEE/ACM Trans. Networking, 2006.

[19] Kandula, S., Katabi, D., Sinha, S. and Berger, A. Dynamic load
balancing without packet reordering. SIGCOMM Comput. Commun.
Rev., 37 (2). 51-62, 2007.

[20] Traw, C. and Smith, J. Striping within the network subsystem. IEEE
Network, 9 (4). 22-32, 1995.

[21] Sivakumar, H., Bailey, S. and Grossman, R.L. PSockets: the case for
application-level network striping for data intensive applications
using high speed wide area networks Proc. ACM/IEEE conf. on
Supercomputing, 2000.

[22] Hsieh, H., Kim, K., Zhu, Y. and Sivakumar, R. A receiver-centric
transport protocol for mobile hosts with heterogeneous wireless
interfaces. MobiCom, 2003.

[23] Rodriguez, P., Chakravorty, R., Chesterfield, J., Pratt, I. and
Banerjee, S. MAR: a commuter router infrastructure for the mobile
Internet Proc. Int. Conf. Mobile Systems, Applications and Services
(MobiSys), ACM, Boston, MA, USA, 2004.

[24] Kim, S. and Copeland, J., TCP for seamless vertical handoff in
hybrid mobile data networks. in IEEE GLOBECOM, 661-665, 2003.

[25] Kim, K.-H., Zhu, Y., Sivakumar, R. and Hsieh, H.-Y. A receiver-
centric transport protocol for mobile hosts with heterogeneous
wireless interfaces. Wirel. Netw., 11 (4). 363-382, 2005.

[26] Stemm, M. and Katz, R. Vertical handoffs in wireless overlay
networks. Mobile Networks and Applications, 3 (4). 335-350, 1998.

[27] Perkins, C., Alpert, S. and Woolf, B. Mobile IP; Design Principles
and Practices. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1997.

[28] Perkins, C. Mobile IP. IEEE Communications Magazine, 35 (5). 84-
99, 1997.

[29] Huang, J., Xu, Q., Tiwana, B., Mao, Z., Zhang, M. and Bahl, P.
Anatomizing Application Performance Differences on Smartphones.
Proc. Int. Conf. Mobile Systems, Applications and Services
(MobiSys). 165-178, 2010.

[30] Snoeren, A.C., Andersen, D.G. and Balakrishnan, H. Fine-grained
failover using connection migration Proc. USENIX Symp. on
Internet Technologies and Systems, 2001.

[31] Chandra, R. and Bahl, B. MultiNet: Connecting to Multiple IEEE
802.1 1 Networks Using a Single Wireless Card. Proc. IEEE
InfoCom, 2004.

[32] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan,
R. and Estrin, D. Diversity in Smartphone Usage. Proc. Int. Conf.
Mobile Systems, Applications and Services (MobiSys), 2010.

[33] Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S. and Estrin,
D. A First Look at Traffic on Smartphones. Proc. Internet
Measurement Conference (IMC), 2010.

[34] Shepard, C., Rahmati, A., Tossell, C., Zhong, L. and Kortum, P.
LiveLab: Measuring Wireless Networks and Smartphone Users in
the Field. Proc. Wrkshp. HotMetrics, 2010.

[35] AdMob. AdMob October 2009 Mobile Metrics Report
http://metrics.admob.com/2009/11/october-2009-mobile-metrics-
report/, October 2009.

[36] Dogar, F. and Steenkiste, P. Catnap: Exploiting High Bandwidth
Wireless Interfaces to Save Energy for Mobile Devices. Proc. Int.
Conf. Mobile Systems, Applications and Services (MobiSys), 2010.

[37] Buchanan, M. Gizmodo Blog: How Multitasking Works on a Phone.
http://gizmodo.com/5527407/giz-explains-how-multitasking-works-
on-a-phone, April 29, 2010.

[38] Squid Web Cache. Squid-in-the-middle SSL Bump http://wiki.squid-
cache.org/Features/SslBump.

[39] Cryptopath blog. iPhone certificate flaws
http://cryptopath.wordpress.com/2010/01/29/iphone-certificate-flaws/

[40] Rahmati, A. and Zhong, L. A longitudinal study of non-voice mobile
phone usage by teens from an underserved urban community, Tech.
Rep. 0515-09, Rice University, 2009.

[41] Nicholson, A.J. and Noble, B.D. BreadCrumbs: Forecasting Mobile
Connectivity. Proc. Int. Conf. Mobile Computing and Networking
(MobiCom). 46-57, 2008.

[42] Rahmati, A. and Zhong, L. Context-based network estimation for
energy-efficient ubiquitous wireless connectivity. IEEE Transactions
on Mobile Computing, 2010.

[43] Sung Kyung, K., Chung Gu, K. and Kyung Soo, K., An adaptive
handover decision algorithm based on the estimating mobility from
signal strength measurements. in Vehicular Technology Conference
(VCT), 2004.

