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Abstract 
This paper addresses the following question: Is it pos-

sible to migrate TCP/IP flows between different networks 
on modern mobile devices, without infrastructure support 
or protocol changes? To answer this question, we make 
three research contributions. (i) We report a comprehensive 
characterization of IP traffic on smartphones using traces 
collected from 27 iPhone 3GS users for three months. (ii) 
Driven by the findings from the characterization, we devise 
two novel system mechanisms for mobile devices to sup-
port seamless flow migration without network support, and 
extensively evaluate their effectiveness using our field col-
lected traces of real-life usage. Wait-n-Migrate leverages 
the fact that most flows are short lived. It establishes new 
flows on newly available networks but allows pre-existing 
flows on the old network to terminate naturally, effectively 
decreasing, or even eliminating, connectivity gaps during 
network switches. Resumption Agent takes advantage of the 
functionality integrated into many modern protocols to se-
curely resume flows without application intervention. 
When combined, Wait-n-Migrate and Resumption Agent 
provide an unprecedented opportunity to immediately de-
ploy performance and efficiency-enhancing policies that 
leverage multiple networks to improve the performance, 
efficiency, and connectivity of mobile devices. (iii) Finally, 
we report an iPhone 3GS based implementation of these 
two system mechanisms and show that their overhead is 
negligible. Furthermore, we employ an example network 
switching policy, called AutoSwitch, to demonstrate their 
performance. AutoSwitch improves the Wi-Fi user experi-
ence by intelligently migrating TCP flows between Wi-Fi 
and cellular networks. Through traces and field measure-
ments, we show that AutoSwitch reduces the number of 
user disruptions by an order of magnitude. In contrast, we 
show that brute-force switching would significantly in-
crease user disruptions. 

1. Introduction 
Modern mobile devices have access to multiple net-

works. Not only do they have multiple network interfaces, 
such as cellular and Wi-Fi, but also a single interface may 
access multiple networks, such as Wi-Fi hotspots from dif-
ferent providers. Over time, for example as the user moves, 
the networks available to a mobile device and their quali-
ties vary greatly. Many researchers have recently demon-
strated the value of properly switching between networks 

[1, 2] or aggregating them [3, 4]. Switching between net-
works can significantly improve the performance [5, 6], 
energy efficiency [1, 7], and connectivity [8] of mobile 
Internet. In this work, we focus not on policies, but mecha-
nisms for switching and/or aggregating networks on smart-
phones. 

The key to switching between networks or aggregating 
them is to change the network for an existing flow without 
disrupting the corresponding application. Brute-force 
switching between networks, where one is simply disabled 
and another enabled, may lead to undesirable disruptions, 
as our own experience corroborates and also is confirmed 
by our user study. Solutions to this problem are available in 
the name of handoff. Some require infrastructure or home 
agent support, e.g. cellular handoff, connection gateway, 
and Mobile IP, which incur extra operating expenses and 
additional latency [9]. Others require changing the TCP/IP 
protocol, which has been shown to be practically very diffi-
cult. Not surprisingly, no automatic switching or aggregat-
ing solutions have been deployed in practice.  

The important question this paper addresses is the fol-
lowing: On modern mobile devices, is it possible to seam-
lessly migrate TCP/IP flows between different networks 
without infrastructure support or protocol changes? Toward 
answering this question, this paper presents three research 
contributions. 

First, we report a comprehensive characterization of 
network traffic on smartphones using three-month traces 
collected from 27 iPhone 3GS users. The characterization 
provides key insights into the motivation and rationale of 
our mechanisms. In particular, we have found that there are 
few concurrent network flows during interactive usage, 
flow lifetimes are typically short, and long-lived flows are 
often predictable.  

Second, we present and extensively evaluate two novel 
system mechanisms implemented in a smartphone to mi-
grate flows between networks without network support and 
without disruption to the user. The first mechanism, Wait-
n-Migrate, takes advantage of the fact that TCP flows are 
short-lived. It establishes new flows on the new network, 
but waits for the pre-existing flows on the old network to 
terminate normally, up to a specific wait-time set by the 
migration policy. The second mechanism, Resumption 
Agent, leverages the resume function in modern servers and 
resumes a flow from wherever it was disconnected, in a 
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manner transparent to applications. Based on our traces, we 
show that using Wait-n-Migrate, we can successfully mi-
grate web flows for 90% and 95% of cases, for wait-time 
values of 10 and 100 seconds, respectively. With the addi-
tion of Resumption Agent, we show that for web flows that 
support resuming, we can virtually eliminate disruptions 
when switching between networks.  

Third, we report an efficient implementation of the 
Wait-n-Migrate and Resumption Agent mechanisms on the 
iPhone platform, and show that their overhead is negligible. 
Based on the two system mechanisms, we further imple-
ment a sample network interface switching policy, 
AutoSwitch. AutoSwitch uses Wait-n-Migrate and Re-
sumption Agent to offload data from cellular to Wi-Fi as 
much as possible, with minimum disruptions to the user. 
AutoSwitch using Wait-n-Migrate alone achieves over one 
order of magnitude reduction in disconnections in our real-
life traces, e.g. from over 40% to well under 10% for 100 
KB transfers while driving. Furthermore, when the content 
supports resuming, disruptions are almost entirely elimi-
nated with the addition of Resumption Agent. 

The rest of this paper is organized as follows. In Sec-
tion 2, we present a motivational user study to show that 
brute force network switching is unacceptable to users, and 
then discuss related work. In Section 3, we present the 
characterization of network traffic on 27 iPhone 3GS users 
and provide insight to the characteristics of network flows 
on modern smartphones. Based on these findings, in Sec-
tion 4, we present the design and trace-based evaluation of 
Wait-n-Migrate and Resumption Agent. In Section 5, we 
report their implementation on iPhone and evaluate their 
performance impact. In Section 6, we present an example 
application, AutoSwitch, of the resulting seamless flow 
migration without network support. Finally, we discuss 
methods to further enhance our mechanisms for increased 
performance in Section 7, and conclude in Section 8. 

2. Background 
2.1 Consequences of Brute-Force Switching 

Without network support, smartphones switch between 
networks (e.g. cellular and Wi-Fi) in a brute-force manner: 
they terminate all application flows on the old network and 
enables the new network. This behaviour is shared across 
all the three major smartphone platforms we studied; iOS, 
Android, and Windows Mobile1. It is then up to the appli-
cation, or often the user, to detect the disconnection and 
retry over the new network This brute-force switch intro-
duces disruptions to interactive sessions. According to our 
personal experience, network disruption is noticeably an-
noying, and particularly prevalent for large web pages or 
during poor connectivity. To better understand the usability 

                                                           
1 The only exception was iOS and only when switching from cel-

lular to Wi-Fi, where it keeps existing connections indefinitely 
on their original interface. 

impact of network disruption (e.g. as will be experienced 
due to brute-force switching), we performed a formal user 
study with 10 participants from the Rice student commu-
nity who already used Internet-ready smartphones. The 
study included an equal number of males and females and 
four participants with non-engineering backgrounds.  

Our study consisted of two parts. The first part asked 
the users to open a copy of a regular news website cached 
on our server for consistency. We then asked users to per-
form a number of text identification tasks on three individ-
ual pages. The participants were later directed to a cached 
copy of a mobile news search engine, where they were 
asked to identify several stories and their sources. During 
the study, our server automatically disrupted the data flow 
for the first load of three of the five page loads. The users 
had to refresh their browser to completely load each page. 
This simulated the impact of a brute-force migration. Par-
ticipants were free to either use their own phones or our 
iPhone for the purpose of this study. 

For the second part, we interviewed the participants to 
assess their browsing experience, including several ques-
tions on a 1 – 5 Likert scale (agree – disagree), and several 
open ended questions. All 10 participants agreed or some-
what agreed that disruptions are an annoying experience. 
Interestingly, all 10 also agreed or somewhat agreed that 
they have had similar experiences prior, and that they typi-
cally refresh a page that has failed to completely load.  

During the open ended question sessions, when asked 
whether they have experienced this phenomenon more of-
ten in specific web sites, 9 of 10 mentioned that they ex-
perience it more frequently with larger transfers, e.g. men-
tioning pages that are as “heavier” or “with lots of graph-
ics”. When asked whether they have experienced this phe-
nomenon more often in specific conditions, 8 of 10 cor-
rectly identified that they experience it more frequently 
during one or more network conditions (e.g. low signal, 
moving). We can see that even without intentional network 
switching, users are subject to unwanted and annoying 
network disconnections. 

While our user study was conducted with a small num-
ber of participants (n=10), considering the high confidence 
intervals, our findings are expected to be true with the ma-
jority of user populations similar to our participants. For 
example, the 90% Agresti-Coull confidence interval [10] 
for 8 and 10 positive answers out of 10 are (0.52 , 0.91) and 
(0.66 , 1), respectively, i.e. there is a 90% chance that the 
statistics for the population falls in those intervals. 

In summary, we confirmed that network disruptions 
annoy users. We also found that typical users have exten-
sive experience with network disruptions, and have even 
figured out the conditions in which they often occur. A 
successful solution to for network disruptions must not 
blatantly change the user experience or discard the partially 
received content. These findings motivate and assist both 
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the design of our mechanisms and our example application, 
AutoSwitch. 

2.2 Related Work 
TCP/IP lacks built-in support for switching between 

multiple networks (handoff) or aggregating their through-
put (multihoming). Therefore, there exists a body of re-
search on providing session continuity [11] between differ-
ent networks, i.e. maintaining the same IP address while 
moving between networks. Current solutions for session 
continuity fall into three categories. First is to have one 
network as the slave to a master network, where all traffic 
is directed through the latter [12], as in Virtual AP. How-
ever this requires unified management of the networks, 
increases traffic on the master network, and increases la-
tency. The second category of solutions utilize a mobility 
gateway in the infrastructure [13, 14], to act as a proxy be-
tween a mobile device and the Internet. For example, such 
gateways have been employed for switching between inter-
faces (Wiffler [5]), for multihoming ([3, 4, 15]), and for 
striping ([13, 16-23]). However, routing all flows through a 
fixed gateway can increase the connection latency.  The 
third category of solutions modify or extend the TCP/IP 
protocol support for mobility, e.g. by adding explicit sup-
port, as in [24, 25], or through Mobile IP [26-28], where a 
home router or agent handles mobility and packet forward-
ing.  However, the extra forwarding increases the traffic on 
the home agent and more importantly, the extra distance 
travelled by packets increases the connection latency. Mo-
bile IPv6 eliminates the need for a specific foreign agent, 
but in return requires individual mobile nodes to perform 
the forwarding operations, with similar drawbacks.  

All three categories of solutions discussed above re-
quire additional infrastructure or network support, and thus 
are not immediately deployable. Those that have begun 
deployment suffer from limited or unsuccessful adoption. 
Furthermore, these solutions increase network latency, 
which is already known to be a major bottleneck in mobile 
Internet performance [29]. In sharp contrast, we present and 
evaluate two novel and complementary switching mecha-
nisms that can be fully implemented on mobile devices 
without requiring network or application support, and with 
insignificant additional latency. This allows our techniques 
to be deployed immediately without changes to applica-
tions or infrastructure.  

There are two solutions related to Resumption Agent. 
Resuming static content is typically supported by download 
managers such as wget. Yet, most other applications, e.g. 
browsers, lack resume functionality. Snoeren et al. [29] 
supported resumption through a client agent for the purpose 
of failover between replica servers, while keeping servers 
largely unchanged. In contrast, Resumption Agent is an 
application agnostic solution for network switching and 
provides automatic resuming capabilities for all pre-
existing applications. Furthermore, it can handle the chal-
lenges of dynamic content and secure HTTPS connections.  

Recently Alperovich and Noble  have proposed to im-
prove Wi-Fi performance for PC clients by switching and 
balancing connections between multiple Wi-Fi access 
points (APs), e.g., as enabled through Virtual Wi-Fi [30]. 
They also retain pre-existing connections on their original 
AP, while assigning new connections to new APs. Yet, our 
work focuses on smartphones and presents mechanisms for 
switching between multiple, heterogeneous networks. We 
go well beyond retaining pre-existing connections by ad-
dressing long-lived flows and supporting pre-existing ap-
plications on mobile phones. 

Finally, there have been several studies addressing 
smartphone usage and network traffic characteristics [32, 
33]. Our contribution in traffic characterization compli-
ments these works, in particular for the purpose of migrat-
ing flows between networks, by providing detailed analysis 
of traffic protocols, flow length and concurrency, and the 
active application concurrent to the flows. These findings 
are crucial for designing and evaluating the feasibility of 
network migration. 

3. Network Flow Characterization 
A thorough understanding of the characteristics of 

network flows on modern mobile devices is critical to the 
seamless migration of flows. We next report a first-of-its-
kind study based on detailed network flow traces from 27 
iPhone 3GS users. The characterization provides key in-
sights for our design, as described in Section 4.  

3.1 iPhone Field Trace Collection  
We gathered real-life network traces from 27 iPhone 

3GS users over the course of 3 months by installing logging 
software we developed, called LiveLab [34]. We chose the 
iPhone because it represents the cutting edge of smartphone 
design for usability, accounting for 55% of all mobile 
internet traffic in the US as of October 2009 [35]. Addi-
tionally, iPhone users have access to the largest number of 

    
Figure 1: Fraction of packets for each protocol (left), and 
fraction of applications for UDP packets (right). 

    
Figure 2: Fraction of TCP flows for each application type 
(Left: non-interactive sessions. Right: interactive sessions, 
i.e. phone display was on). 
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third-party applications from the Apple App Store and nu-
merous third-party repositories. 

Whenever the phone’s CPU is not asleep, LiveLab re-
cords TCP network connection statistics every two seconds 
using the netstat tool, also available on Windows and 
Linux/Unix platforms. Moreover, LiveLab records the ap-
plication being used and the display status in real time, and 
Wi-Fi signal strength for the currently connected AP and 
all visible APs every two seconds and 15 minutes, respec-
tively. Finally, it recorded the complete packet headers for 
three of the participants over one month, in order to gauge 
the data flow over UDP. We refrained from deploying this 
packet-level logging for longer time or more users due to 
its overhead. The data is recorded on the phones, and is 
transferred nightly to our servers in a secure fashion.  

While our participants were not recruited to accurately 
represent the vast mobile user population, the data collected 
from them provides an unprecedentedly detailed look into 
the connectivity on contemporary mobile devices. 

3.2 Focus on TCP Flows 
The packet-level logging data shows that out of the 

three common IP protocols in use TCP, UDP, and ICMP, 
TCP flows present the main challenge towards flow migra-
tion. TCP, ICMP, and UDP account for 68%, 27%, and 5% 
of all packets, respectively (Figure 1). While we will exam-
ine TCP flows in details later, we will first discuss ICMP 
traffic and UDP flows. 

ICMP packets are typically not used by interactive ap-
plications, but by devices to for diagnostics, device discov-
ery and error messages specific to each network. Therefore, 
for the purpose of switching between networks, they can be 
safely ignored.  

UDP flows only contribute 5% of the total packets. 
Yet, we analyze the UDP flows based on port numbers, and 
further corroborate this analysis with the applications being 
used. Notably, the phones were almost always listening to 
all UDP ports. We have found the following services and 
applications utilize UDP on the phones (Figure 1): 

 Skype (92%) uses UDP ports 12340 and 20515. 
 Dropbox (4%) uses UDP broadcast on port 17500 
 Simple Service Discovery Protocol (SSDP) (2%) is 

used to advertise and discover network services.  
 NetBIOS (1%) for local area network device discovery 

and networking 
 Other (<1%) such as NAT Port Mapping  

With the exception of Skype, all of these are network 
and discovery services and specific to a particular network. 
Therefore we will ignore them for the purpose of switching 
between networks, similar to ICMP traffic. We will analyze 
how Skype can be migrated to a different network in Sec-
tion 3.4.1. For the remainder of this paper, we will focus 
exclusively on TCP flows unless mentioned otherwise. 

3.2.1 TCP Flows 
Using the port number of the server, we divide external 

TCP flows into three categories: 

 Web (HTTP: 80, HTTPS: 443): These are used by not 
only the browser, but also by a number of native appli-
cations that utilize web services or a built-in browser. 

 Email (IMAP: 143, 993, POP3: 110, 995, SMTP: 25, 
465): These are used by the native email client, and 
will not include email accessed through the browser. 

 Other: All other applications and services. 

                  
Figure 3: Distribution of the number of concurrent TCP flows for different TCP ports, average among all users (Left: non-
interactive sessions. Right: interactive sessions.) 

           
Figure 4:  CDF of TCP flow lifetimes in seconds, based on TCP port, average among all users (Left: non-interactive sessions. 
Right: interactive sessions.) 
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Figure 2 shows the fraction of TCP flows utilized for 
each application during both interactive and non-interactive 
usage. We use the display status (on) as an indicator of the 
phone is being used interactively. We can see that more 
than three quarters of TCP streams are web flows, high-
lighting the importance of handling them properly. We also 
separate and ignore local (loopback) flows that reside only 
on the phone. 

Figure 3 and Figure 4 show the distribution of the 
number of TCP flows and the CDF of flow lifetimes, re-
spectively, for both interactive and non-interactive sessions 
among all users. We can see that flows have similar charac-
teristics during interactive and non-interactive usage, yet, 
on average, flows during interactive usage have slightly 
shorter lifetimes. In the following Sections, we will study 
them in further detail, according to application use. 

3.3 Flow Concurrency 
While analyzing the LiveLab data, we were surprised 

to discover that there are few concurrent flows on the 
iPhone platform. However, there almost always exists one 
particular flow, 97% of the time that the phone is awake. 
We have identified that flow as Apple’s push notification 
service, on port 5223. The median number of flows was 2 
for both interactive and non-interactive sessions. Figure 5 
shows the distribution of number of concurrent TCP flows, 
excluding the Apple Push service, whenever the phone’s 
CPU was running for the three port types presented in Sec-
tion 3.2.1 (web, email, other). We identified the top seven 
applications that require Internet access using the data from 

our field study, which include Pandora (music streaming) 
and Skype (instant messaging, voice over IP). These appli-
cations account for over 95% of interactive phone Internet 
use. Non-interactive usage, including when the display was 
off, idle time, when the home screen was displayed are 
presented separately. Other applications, including those 
without specifically requiring internet connectivity, are 
clustered together as others. For email and other ports, we 
display only the applications that we have determined to 
use those ports.  

We can see that even when running internet enabled 
applications, the phone is rarely engaged in multiple TCP 
flows simultaneously. The small numbers of simultaneous 
TCP flows shows that for web applications on mobile 
phones, multihoming mechanisms (i.e. non-striping) are 
effective for at most 20% of flows, as the other 80% of 
times when a web flow exists, it is a single flow. However, 
we expect this number to increase as more applications and 
services on mobile devices become available. The mail 
application, while not typically data intensive, presents an 
exception, as it regularly uses multiple flows when active. 

3.4 Flow Lifetime 
We have found that most interactive flows on the 

phone were short lived, and it is often possible to automati-
cally predict long-lived flows. We measure the flow life-
time without including the connection / teardown phase 
(e.g. wait_fin). Our logs show a wide variation in the life-
time of TCP flows on the experimental phones, in particu-
lar between interactive and non-interactive usage sessions.  

         
Figure 5:  Distribution for the number of TCP flows when running different Internet applications. (Left): Web. (Center): Email.
(Right): other ports, excluding the Push Service.  

 
Figure 6:  CDF of TCP flow lifetimes (seconds), based on active application. (Left): web ports. (Center): email ports, (Right):
other ports. 
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Figure 6 shows, on average among our participants, the 
CDF (cumulative distribution function) of TCP session 
lengths for different TCP ports and different active applica-
tions, similar to Section 3.3  

Our first finding is that most flows are short lived. In 
fact, 50% and 44% of flows for non-interactive and interac-
tive sessions, respectively, are ~2 seconds or less. In turn, 
this limits the effectiveness of power saving schemes which 
rely on long-lived downloads, such as CatNap [36]. 

Our second finding is that it is possible to predict flow 
lengths based on active application and port, i.e. the distri-
bution of flow lifetimes varies significantly based on TCP 
port, active application, and whether the phone is being 
used interactively. For example, as shown in Figure 6, the 
fraction of short lived email flows (i.e., IMAP, SMTP, 
POP3) is much lower: 30% and 20% for non-interactive 
and interactive sessions respectively. Similarly, the Apple 
Push service is known to be long lived. On the other hand, 
as shown in Figure 6, TCP flows during web browser ses-
sions were shorter than average. We will later see how 
these findings are important for our switching mechanisms. 

3.4.1 Long-lived Non-Standard TCP Flows 
We next consider long-lived flows that use non-

standard protocols, other than web, ftp, and email. Such 
flows are difficult, if not impossible, to migrate without 
network support. However, a close examination reveals that 
such flows usually do not require migration support at all.  

First, long-lived TCP flows based on closed applica-
tion protocols are usually from background, non-interactive 
applications. Therefore, their disruption or brute-force mi-
gration will be unnoticeable to users.  

More importantly, the handful of applications that util-
ize long lived non-standard protocols already provide sup-
port to migration in various forms because the application 
developers anticipate the possibility of disconnection. For 
example, applications such as Push notifications, Twidroid, 
and many instant messaging applications are designed to 
gracefully and automatically re-establish a connection after 
being disconnected. Another example, Pandora, a common 

Internet radio streaming application, and the only one that 
appeared in our participants’ list of top 25 applications, 
skips the unbuffered part of the current song, i.e. at most 
suffer skipping part of a track. For yet another example, as 
long as the primary interface in the system routing table is 
correctly updated, e.g. as is the case with our mechanisms 
or when the user manually enables or disables Wi-Fi, 
Skype switches to the new network for both its TCP and 
UDP connections, without dropping a call and with only a 
very short period (~1 sec or less) of muting in the audio. 
However, if the system is unaware of the disruption (e.g., 
moving out of Wi-Fi coverage), Skype will drop the call. 
This highlights the importance of notifying applications 
and the system of the network change.  

3.5 Background Applications  
While the iPhone 3GS we used in the study was the 

state-of-the-art phone at its time, it lacks official support of 
multitasking for third-party applications as of OS 3.x. Yet, 
we expect that increased multitasking will not reduce the 
usability and effectiveness of the Wait-n-Migrate and Re-
sumption Agent mechanisms. We note that Android and the 
newly released iPhone iOS 4.0 allow background applica-
tions, e.g. Skype and Pandora, to access data networks [37]. 
This, alongside the increasing processing power and mem-
ory of phones, suggests an increase in the usage of back-
ground capable applications (e.g. instant messaging, 
Twidroid). Therefore, we would expect to see an increase 
in the number of simultaneous network flows, from those 
shown in Figure 3 and Figure 5.  

Assuming the device can remain connected to two 
networks simultaneously, we can consider each application 
independently for both Wait-n-Migrate and Resumption 
Agent. Indeed, flows belonging to a certain application do 
not impact other application flows. Therefore, an increase 
in the number of multitasked applications will not affect the 
general performance of our mechanisms. 

4. Migration without Network Support 
Based on the findings from Section 3, for the purpose 

of migrating network flows between networks, we focus on 

 

 
Figure 7: Flowchart for Wait-n-Migrate Figure 8: Wait-n-Migrate operation (Top), and the special 

case without requiring simultaneous connectivity (bottom).  
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seamlessly migrating short lived flows or flows using stan-
dard protocols such as HTTP and FTP. We provide two 
novel and complementary mechanisms for migrating such 
flows without network support. We envision that in most 
systems, Wait-n-Migrate will be used primarily, and Re-
sumption Agent will be used to migrate flows that were not 
successfully migrated by Wait-n-Migrate. 

4.1 Wait-n-Migrate  
Our first method leverages the fact that most flows are 

short lived, as seen in Section 3. Wait-n-Migrate typically 
requires the device to be able to connect to multiple net-
works simultaneously. This may be through multiple inter-
faces (e.g., 3G and Wi-Fi) or through one interface (e.g., 
multiple Wi-Fi networks through Virtual Wi-Fi [31]).  

In order to migrate one or more flows between two 
networks, Wait-n-Migrate operates as follows (Figure 7). 
First it enables both networks so the system has simultane-
ous connectivity to both. Second it ensures all new flows 
are created on the new network. Then it waits for the flows 
on old network to terminate naturally, up to a specific wait-
time (Figure 8). The wait-time for each flow is a parameter 
determined by the particular migration policy and can be 
set according to application, bandwidth, and power consid-
erations, and may be adaptive according to flow character-
istics presented in Section 3. Different wait-time values can 
be used for switching to different networks. For example, 
when the system policy requests a network switch to a 
slower or less efficient network, e.g. in order to assure con-
nectivity, the wait-time can be set to infinite, i.e. until los-
ing connectivity. On the other hand, when switching back 
to the faster / more efficient network, a shorter wait-time 
should be used. Finally, if there are no remaining flows on 
the old network, the system can disable or power it off al-
together. 

When the system cannot be connected to both net-
works simultaneously, a special case of Wait-n-Migrate can 
be used. This special case takes advantage of the fact that 
that most TCP flows are short lived. It monitors TCP flows 
and attempts to choose the best moment to switch within a 
specifically allowed time range, in order to minimize dis-
ruptions. This is possible through the statistical properties 
of TCP flows, as presented in Section 3.  

Finally, Wait-n-Migrate can employ flow lifetime pre-
diction to further improve its effectiveness and efficiency. 
Wait-n-Migrate does not interfere with short-lived flows in 
order to avoid user disruption. However, for flows that are 
known to be highly likely to live beyond the wait time, e.g. 
based on the findings in Section 3, Wait-n-Migrate can 
terminate them immediately. For example, we already 
know that several types of flows are long lived, e.g., Push 
notifications and idle email flows. If the device is switching 
to a faster or more energy-efficient network, Wait-n-
Migrate can terminate such flows immediately, thus im-
proving performance. 

4.2 Resumption Agent 
Our second method, Resumption Agent, leverages the 

fact that many interactive applications use standard applica-
tion layer protocols such as HTTP, HTTPS, as highlighted 
in Section 3.2, and that most servers for these protocols 
support resume. Resumption Agent is a locally run proxy 
that enables flow migration for most such flows. It provides 
a safety net to reduce the user impact of network switching 
when Wait-n-Migrate terminates a flow for migration. With 
Resumption Agent, Wait-n-Migrate can be more aggressive 
in migrating flows and therefore allow for faster switching. 

Resumption Agent can support any application that al-
lows resuming from a specified location in the transfer. 
Several key standard application-layer protocols, including 
HTTP and FTP, provide adequate support for resumption 
of a terminated transfer. For example, the HTTP standard, 
from version 1.1 onwards (1996), supports specifying a 
range when requesting a web page. The FTP standard also 
supports resuming via the rest command. Standard email 
protocols (e.g. IMAP, POP, and SMTP) can also be re-
started from the beginning of any email, or any individual 
attachment in the case of IMAP. 

Resumption Agent works as follows. It requires a 
background service running only on the device itself, which 
acts as a proxy, and modifies the phone settings so that 
applications use this proxy to connect to the internet. If a 
flow is disconnected prematurely, Resumption Agent 
automatically resumes the transfer from where the flow was 
cut off. Therefore, when a flow needs to migrate to a new 

 

 

 

Figure 9: Regular proxy operation and Resumption Agent 
man-in-the-middle operation for a browser application 

Regular Proxy or
Migration Agent

HTTPHTTP

Browser server.com

HTTP

Regular Proxy HTTPS

Browser

server.com 
certificate signed 
by trusted CA

server.com

Regular HTTPS

Resumption 
Agent

HTTPS

Resumption Agent, man‐in‐the‐middle HTTPS

Browser server.com

server.com 
certificate signed 
by Resumption 

Agent

server.com 
certificate signed 
by Trusted CA

Phone



8 

network, it can be terminated on the old network and re-
sumed on the new network in transparent manner to the 
application. Finally, Resumption Agent can employ flow 
lifetime prediction to further improve its effectiveness and 
efficiency. For web flows, their sizes are typically know at 
the beginning of the transfer, through the HTTP header 
response Content-Length. If Resumption Agent is used in 
conjunction with Wait-n-Migrate, the content length and 
bandwidth can further assist in determining whether to kill 
flows immediately or wait for them to terminate normally. 

We note that download managers, such as wget, sup-
port the automatic resuming of static content. Yet, they are 
unable to handle the challenge of unsupported content, as 
discussed in 4.2.1. More importantly, web browsers (on 
both PCs and phones), and most other applications (e.g. the 
iPhone YouTube application) lack automatic resuming 
functionality. In contrast, Resumption Agent is application 
agnostic and appears as a regular proxy server to applica-
tions, thus providing a system level solution for all pre-
existing applications. Moreover, Resumption Agent can 
handle network migration and two non-trivial challenges to 
Resumption Agent for web flows, posed by unsupported 
content and encrypted HTTPS flows. We next discuss them 
and present our solutions. 

4.2.1 Unsupported Content 
There are three groups of content that cannot be re-

sumed in the middle of the transfer.  

(i) The first group includes content that does not allow 
resuming. For example, some servers may ignore HTTP 
Range requests altogether or for specific content, such as 
small transfers, or chunk encoded data (the size of the data 
is not known beforehand). In this case, the transfer, if inter-
rupted, must be restarted from the beginning, resulting in a 
second and unnecessary transfer of the initial portion, 
which the Resumption Agent will ignore.  

(ii) The second group is content uploads, usually using 
HTTP POST, in which there is always the risk of repeating 
an action, e.g. a purchase. In such cases, such as when the 
user refreshes a page with POST content, web browsers 
present the user with a warning. Resumption Agent uses the 
same behaviour and will avoid automatically resuming 
such a transfer if it is disconnected.  

(iii) The third group is dynamic content that changes 
significantly for every reload. Resumption Agent deals with 
dynamic content using two methods. First, the HTTP head-
ers Pragma:no-cache and Cache-Control:no-cache in the 
request and response headers, respectively, indicate dy-
namic content, as the prevent proxies and other web servers 
from caching the content. Thus, if Resumption Agent sees 
these tags, it can abstain from automatically resuming a 
failed transfer. Second, in order to support dynamic content 
that does not provide hints in the headers, Resumption 
Agent always resumes from a preset length prior to the 
disruption. It then compares the overlapping sections. If the 

overlapping sections are identical, Resumption Agent will 
simply continue with the resume. If the overlapping sec-
tions become identical after applying a small offset to the 
data, e.g. to account for a slightly smaller or larger dynamic 
advertisement content, it will correct the offset and can 
continue with the resume. Only if the overlapping sections 
are not identical even after applying an offset, will Re-
sumption Agent abort the resume and the transfer will fail.  

4.2.2 Encrypted HTTPS Flows  
A greater challenge comes from HTTPS, as it is im-

possible for a proxy to directly inspect its contents, which 
is end-to-end encrypted by SSL. Indeed, when an applica-
tion wants to connect to a HTTPS server through a typical 
proxy, it sends a CONNECT command to the proxy. The 
proxy, upon validating the eligibility request, will create a 
tunnel to the requested server, without touching the trans-
ferred content. Such a configuration, with end-to-end en-
cryption would make it impossible to analyze the data, nec-
essary for transparently resuming or striping transfers.  

Resumption Agent employs a novel and elegant two-
part solution to this challenge. First, it will exploit a man-
in-the-middle attack. That is, as shown in Figure 9, Re-
sumption Agent presents itself to the client as the destina-
tion server. It then connects to the destination server, and 
therefore has access to the transferred stream, and can per-
form the same functionality it does for HTTP. We note that 
the open source web proxy, squid, has built-in support for 
such man-in-the-middle operation [38].  

  

      
Figure 10: Performance of Wait-n-Migrate (top) and 
the special case without simultaneous network connec-
tivity (bottom), measured as the percentage of flows 
successfully migrated to the target network, for differ-
ent timeout values using our field-collected traces.  
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A standard man-in-the-middle attack by a third party 
is, however, unable to present the correctly signed certifi-
cate to the client application, and depending on system 
policies, it typically raises a warning to the user. Changing 
system policies to ignore security certificates would open 
the door to any man-in-the-middle attack, and is therefore 
unacceptable. Indeed, in order to maintain security, the 
certificate check must be strictly enforced.  

The second part of our solution addresses this chal-
lenge. All computer systems, including our iPhones, de-
pend on a number of preinstalled Certificate Authorities 
(CAs) to sign and validate all server certificates. Since Re-
sumption Agent is not a third party, it can install its own 
local CA on the device, without compromising security.  
This is possible on the iPhone [39] as well as other plat-
forms. Resumption Agent can then sign the certificates it 
presents to applications, preventing them from displaying 
warning messages. Resumption Agent has to create a new 
certificate once for each HTTPS domain the user accesses. 
We have measured the overhead of certificate generation 
on the iPhone 3GS to be on average 1.7 seconds, with a 
standard deviation of 1.2 seconds, measured over 100 ex-
periments.  Furthermore, to completely avoid this latency, 
the device can use the typical CONNECT command the 
first time the user accesses a new site, but generate the cer-
tificate for subsequent accesses. 

When connecting to a server, Resumption Agent veri-
fies the security certificate of the server instead of the ap-
plication (e.g. browser). In order to maintain security, Re-
sumption Agent (instead of the application) displays a 
warning to the user if a server’s certificate is not correctly 
signed. The user can then decide whether to continue or 
forgo a potentially unsecure connection. In order to main-
tain security it is imperative to strictly enforce the certifi-
cate verification between clients and servers. We conjecture 
that a consistent warning for invalid certificates may be 
more understandable to end users than application specific 
warnings. Therefore, Resumption Agent can in fact reduce 
bad decisions by users and increase security. 

4.3 Trace-Based Evaluation  
In this section, we demonstrate the efficacy of Wait-n-

Migrate and Resumption Agent using our field collected 
traces of real-life usage.  

To evaluate Wait-n-Migrate, we calculate the percent-
age of flows that are successfully transferred between net-
works for different wait-time values, assuming a time uni-
form probability of the system attempting a switch. To 
evaluate Resumption Agent, we measure the feasibility of 
resuming video streaming and browsing, and show that 
both YouTube and the majority of the websites participants 
most commonly visited indeed support resuming. 

4.3.1 Wait-n-Migrate 
As mentioned in Section 4.1, Wait-n-Migrate requires 

both networks/interfaces to be connected simultaneously, at 
least for the duration of the migration. For this evaluation, 
we assume the device intends to migrate all existing flows 
to a new network. We have used our traces to calculate the 
percentage of flows that Wait-n-Migrate can successfully 
migrate to the new network without disruption, shown in 
Figure 10. For example, Wait-n-Migrate successfully mi-
grates all web flows for 90% and 95% of cases for wait-
time values of 10 and 100 seconds, respectively.  

As discussed in Section 4.1, there is a special case of 
Wait-n-Migrate that is employed when the system can only 
remain connected to one network, which waits for the mo-
ment where there are no ongoing flows to switch the net-
work. For our evaluation, we assume that this special case 
waits for the moment when there are no web flows to 
switch between networks. We have used our traces to cal-
culate the percentage of flows that the special case of Wait-
n-Migrate can migrate to the new network without disrup-
tion in this manner, shown in Figure 10. Since our policy 
does not wait for presumably non-interactive flows (i.e. 
non-web) to end, we can see a significantly larger number 
of disconnections for those flows. Yet, the special case of 
Wait-n-Migrate performs relatively close to Wait-n-
Migrate for web flows, as there are rarely multiple web 
flows in our traces, as shown in Section 3. However, we 
believe that increased complexity and multitasking in fu-
ture applications will increase the performance difference 
of Wait-n-Migrate and its special case. 

4.3.2 Resumption Agent 
We have studied the applicability of Resumption 

Agent for two important applications, the web browser and 
the YouTube application.  

We have tested YouTube and it is fully supported by 
Resumption Agent; the stream is based on standard HTTP 

 
Figure 11: Non-static web pages often have the same or 
similar content lengths: CDF of the length differences of 
two consecutive downloads (among the top 100 pages ac-
cessed by our users) 
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protocols and our experiments show that YouTube servers 
indeed support resuming videos at an arbitrary location. 

We evaluate the applicability of Resumption Agent for 
web browsing by identifying whether it can be effective for 
the top 100 websites our users have visited. We used our 
user study logs to generate the list of top 100 websites our 
users visit. For each of these 100 sites we measure the re-
sume capability of the website’s homepage and its embed-
ded media (e.g. images). We test the homepages (i.e. top 
page) since we found that many deeper, pages may depend 
on previous state information, e.g. a specific referrer, cook-
ies, or user login). We crawl these sites both as an iPhone 
browser and as a desktop browser, set through the User-
Agent HTTP header. Every crawl, we download each item 
three times, twice in full, and once from the middle of the 
transfer to determine 1) if the item supports resuming, and 
2) if the item is static. We present the results for the iPhone 
and desktop browsers together, since they were similar.  

As shown in Figure 12, we found that 100% of embed-
ded media is static and therefore supported by Resumption 
Agent. 91% of those support resuming from the middle of a 
transfer; i.e. without the need to re-transfer the already 
transferred part. Among the HTML homepages, 57% were 
static, and 9% had the same content length between our two 
consecutive downloads, but had slightly different content. 
Furthermore, most others had content lengths very close to 
each other. Figure 11 shows the Cumulative Distribution 
Function (CDF) for the length differences between two 
consecutive downloads for our top 100 pages. We can see 
that another 30% had content lengths within 1% of each 
other. Therefore, we expect them to be supported by Re-
sumption Agent, as described in Section 4.2.1. We note that 
only 16% of the HTML pages can be resumed from the 
middle of the transfer, vs. 89% of the embedded content. 
The remaining pages that do not support HTTP resume 
functionality incur an extra overhead of re-downloading the 
already transferred part, but can still be resumed transpar-
ently to the application.  

Finally, while none of the embedded content used 
HTML tags to disallow caching, we observed that 30% of 
the HTML pages were marked as such. However, of the 
HTML pages that disallowed caching, 36% in fact had 
static content, and 44% had content with the same length. 
Therefore, we conjecture that the no-cache response header 
may possibly be ignored by Resumption Agent. 

5. iPhone 3GS based Implementation  
We implemented both the Wait-n-Migrate and the Re-

sumption Agent mechanisms on the iPhone platform and 
measured their system overhead to be negligible. While the 
iPhone is a closed platform, a jailbreak has been consis-
tently available, making it possible to develop low-level 
system software and implement these mechanisms. 

We have constrained our solution to support legacy 
applications. The methods we have used, e.g. to acti-

vate/deactivate network interfaces, are supported on every 
major OS without kernel modification, however some im-
plementation details are OS specific, as described below. 

5.1 Wait-n-Migrate 
The implementation of Wait-n-Migrate realizes four 

functions: monitoring flows, selecting the primary network 
interface, terminating individual TCP flows, and disabling 
a network interface: 

(i) Flow Monitoring: An intelligent network switching 
policy requires detailed knowledge of flow properties. For 
example, it may want to force the migration of high band-
width flows with long durations immediately while switch-
ing to Wi-Fi. Towards this end, Wait-n-Migrate continu-
ously records flow statistics, such as application, duration, 
destination, and bandwidth, for all flows. This information 
is reported in real-time, as well as kept in a database which 
is made available to the switching policy. 

(ii) Selecting Primary Network: The implementation of 
Wait-n-Migrate depends on the ability to modify the sys-
tem’s routing tables to direct all new flows through the new 
network.  The routing table consists of a set of prioritized 
rules dictating which interface and gateway to use for es-
tablishing outgoing sockets.  All common operating sys-
tems have a routing table which they allow to be modified 
through well documented system calls.  While it is possible 
to directly modify the routing table on the iPhone, we 
found that any modification to the primary default gateway 
triggered the system to reset the routing table.  Instead we 
were able to use the scutil command to change the priority 
of the networks; this in turn automatically changes the rout-
ing table appropriately, as well as the DNS settings, and 
sends a system wide notification of the network change (as 
it typically does when switching interfaces).  The overhead 
for invoking a switch is quite small, as it simply changes a 
system setting, and takes less than 300ms to complete.  
scutil is an OSX specific tool, though other OSs provide 
proprietary methods to select the primary network inter-
face.  Conveniently, the iPhone does not disable the cellular 

Establish Connection to Server  
Forward Client Headers 
Forward Server’s Reply Headers to Client 
While download_unfinished && tries < MAXRETRIES  { 

Forward CHUNKSIZE bytes of data 
If disconnect_signaled  
 Disconnect connection to server 
If disconnected && eligible for resume 
 Reconnect to server 
 Forward original headers 
  If server supports ranges 
   Request range starting at prior to disconnect 
  else 
   Download and discard previously downloaded data 
Tries++ 

} 
Close sockets 
 
Figure 13: Pseudocode for Resumption Agent 
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interface while Wi-Fi is connected, as some platforms, such 
as Android, do.  This, however, does not have a power im-
pact as the phone must leave the cellular interface on in 
order to receive calls. 

(iii) Terminating Flows: As previously mentioned, it 
may be necessary to force the migration of specific flows, 
such as those that are known to be of long duration. We 
have achieved this by porting tcpkill to the iPhone platform. 
tcpkill has been ported to all major kernels, including Dar-
win, Windows, FreeBSD, OpenBSD, HP-UX, AIX, So-
laris, and Linux. tcpkill uses libpcap and libnet to de-
tect/monitor the TCP stream and inject a TCP RST packet 
which kills the connection. When the application recon-
nects it is automatically routed through the new network.  

(iv) Disabling Network: Wait-n-Migrate provides a 
mechanism to disable the entire network being migrated 
from. This can be useful after individual flows have been 
appropriately dealt with, or none of the flows require spe-
cial treatment, depending on policy. Every major OS has 
methods to disable network interfaces. For UNIX based 
OSs this is typically “ifconfig interface down”. Unfortu-
nately this method currently does not work on the iPhone, 
however similar functionality can be achieved through the 
scutil or ipconfig commands. Additionally, low level ioctl 
calls can also accomplish this behaviour.  

5.2 Resumption Agent 
We implemented Resumption Agent in 1400 lines of C 

code; it can be built and run on any POSIX compliant sys-
tem, including Linux and iOS. Resumption agent is similar 
to other proxies, such as squid, in that it acts as a relay 
point for Internet communication between clients and serv-
ers, complies with HTTP 1.0/1.1 specifications, and han-
dles multiple concurrent connections.  

Our implementation (Figure 13) leverages standard 
UNIX sockets and multithreading. When Resumption 
Agent starts it initializes a pool of worker threads, using 
libpthread, to handle concurrent requests. Each thread han-
dles one request at a time, however more threads can be 
dynamically created to handle heavy loads. Creating the 
threads in advance reduces latency for handling incoming 

requests. Next the agent uses the listen() command to start 
listening on a predefined TCP port, such as 8080, for in-
coming connections.  

When a new incoming client connection is received, 
Resumption Agent uses the connection’s file descriptor to 
hand the request to a worker thread. The worker thread then 
uses asynchronous non-blocking UNIX IO, read_nio(),to 
read from the connection. It parses the client headers, then 
establishes a connection to that server and forwards the 
client's request headers to the server. When the server be-
gins answering the request, the worker thread forwards the 
data back to the client. We note that for each transfer, Re-
sumption Agent only has to process the header data; every-
thing else is simply forwarded without processing over-
head, minimizing any performance impact. Furthermore, in 
order to reduce CPU usage and bandwidth without increas-
ing latency, the worker threads employ a large read size of 
2KB, or the amount of data available in the system queue, 
from the server before forwarding it to the client.  

The socket() implementation usually allows a socket 
timeout option to be specified, to report a disconnection if 
no data has been sent after the specified timeout. Unfortu-
nately, while the iPhone appears to implement this option, 
it failed to function. Thus, we implemented our own time-
out detection, with the same behaviour. If a timeout is de-
tected, or the socket throws any error, the worker thread re-
establishes a connection to the server and attempts to re-
sume the transfer where it left off. The worker will retry up 
to a predefined number of times, by default 50, before giv-
ing up; this keeps the worker from running infinitely, and 
potential flooding the network, if the server or network 
becomes unavailable for an extended period of time. 

We have measured the performance impact of Re-
sumption Agent to be minimal in normal usage. In particu-
lar, Resumption Agent consumes less than 300 KB of 
memory, and it increases linearly with the number of con-
current transfers. Its mean CPU consumption is negligible 
when idle, and 3 – 4% when actively handling transfers. 
Most importantly, we have measured the additional latency 
introduced by the Resumption Agent to be statistically in-
significant over 200 test runs. 

 
Figure 14: Probability of disconnection vs. Wi-Fi signal 
strengths 
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6. Example Application: AutoSwitch 
In order to evaluate the combined effectiveness of the 

Wait-n-Migrate and Resumption Agent mechanisms, we 
have developed AutoSwitch, an automatic network inter-
face switching policy. AutoSwitch attempts to offload data 
from cellular to Wi-Fi as much as possible, with minimum 
disruptions to the user. AutoSwitch solves a common com-
plaint about Wi-Fi [40] – that it is unreliable or unusable at 
low signal levels, such as while the user is moving in and 
out of coverage areas. To achieve this goal, AutoSwitch 
intelligently switches between wireless networks using 
Wait-n-Migrate and Resumption Agent, before losing con-
nectivity (e.g., due to mobility). We note that other solu-
tions have been proposed to offload cellular traffic on Wi-
Fi, e.g. [5], but they typically rely on a mobility gateway / 
proxy to handle network switches, with inherent latency 
and deployability drawbacks as discussed in Section 2.2. 

6.1 AutoSwitch Design  
AutoSwitch attempts to migrate TCP flows from Wi-Fi 

to cellular before Wi-Fi coverage is dropped or Wi-Fi be-
comes unreliable, and migrate back to Wi-Fi when a reli-
able Wi-Fi connection becomes available again. For sim-
plicity, and without losing generality, we assume that cellu-
lar coverage is always available.  

Often, in particular for the case of mobility, switching 
between networks occurs due to forced disconnections. For 
example, a phone may switch from 3G to a Wi-Fi network 
when Wi-Fi becomes available, but move out of Wi-Fi 
coverage shortly afterwards; thus the phone is forced to 
switch back to 3G. In such a case, it is too late to effec-
tively use Wait-n-Migrate. However, previous work shows 
that it is indeed possible to accurately predict network con-
ditions, and therefore initiate the network switch before 
losing coverage. For example, Breadcrumbs [41] and our 
previous work [42] predict network conditions for the near 
and far future, respectively. As our main focus is on flow 
migration and not on the switching policy, we use a simple 
yet effective predictor, signal strength [8, 43], to initiate a 
network switch before losing Wi-Fi coverage completely.  

In order to determine the policy for switching to and 
from Wi-Fi, we extended LiveLab for three iPhone 3GS 
users for three weeks to continuously test and record net-
work disconnections, measured by the ping tool. These 
three users acted as a sampling tool to measure Wi-Fi reli-
ability at different signal strengths, collecting over 1 mil-
lion connectivity tests, shown in Figure 14. We define a 
Wi-Fi connection as disconnected if all ping tests over a 
period of 5 seconds are lost, regardless of the reported sig-
nal strength. We can see that Wi-Fi starts to become unreli-
able starting at approximately -82 dBm on iPhone 3GS.  

Based on these results, we employ a simple hysteresis 
over both time and signal strength to reduce erroneous 
switching. AutoSwitch, using Wait-n-Migrate and Resump-
tion Agent, switches to cellular when a Wi-Fi signal level 
of -75 dBm or less is maintained over 3 seconds, and 
switches back to Wi-Fi when Wi-Fi signal strength reaches 
-70 dBm.  

6.2 Trace-based Evaluation 
We have used the traces from LiveLab to evaluate the 

efficacy of AutoSwitch using Wait-n-Migrate, during rou-
tine interactive usage. As mentioned in Section 6.1, 
LiveLab provides us with continuous signal strength meas-
urements, but not connectivity measurements. We utilize 
the Wi-Fi signal strength measurements and the probability 
of disconnection at different signal levels, presented in Fig-
ure 14, to calculate the expected number of disruption in a 
web application. We further assume that if Wi-Fi is not 
disconnected at a specific signal level in a particular usage 
session, it will not be disconnected at that signal level for 
the entire session. 

We present the expected number of disconnections for 
AutoSwitch using Wait-n-Migrate, with wait-times of 10, 
30, and 100 seconds, respectively, in Figure 15. We com-

 
 Figure 16: Map of paths travelled in Rice University, for 
walking (1 km, Blue loop) and driving (3 km, Red loop) sce-
narios 

 

 
Figure 17: AutoSwitch significantly increases the success rate 
of 10KB, 100KB, and 1MB transfers when walking (top) and 
driving (bottom) on Rice Campus  
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pare it with two cases, one where Wi-Fi is left on (no 
AutoSwitch), and another case where AutoSwitch switches 
between networks in a brute force manner, without utilizing 
Wait-n-Migrate.  

Using 1120 hours of interactive usage traces with Wi-
Fi enabled, for web usage, the users were expected to ex-
perience 213 disruptions without AutoSwitch. Employing 
AutoSwitch using Wait-n-Migrate and a constant wait-time 
of 10, 30, and 100 seconds, users were expected to experi-
ence 80%, 87%, and 91% fewer disconnections, respec-
tively (Figure 15). In contrast, AutoSwitch with brute force 
switching, i.e., without Wait-n-Migrate, slightly increases 
disconnections to 246, due to false positives. 

We must note that users indeed take note of the mobil-
ity and coverage limitations of Wi-Fi, as confirmed by our 
motivational user study from Section 2.1 and prior work 
[40]. Therefore, they may turn off Wi-Fi altogether in con-
ditions they know it is prone to failing. Hence, we expect 
that the results in this section, obtained from the traces 
when Wi-Fi was enabled, underestimate the potential bene-
fit from AutoSwitch using Wait-n-Migrate. 

6.3 Field Evaluation  
We further evaluate AutoSwitch using both Wait-n-

Migrate and Resumption Agent on the iPhone platform. For 
performance evaluation we wrote a script to automatically 
download a predetermined file over HTTP, from a server 
that supports resuming, every five seconds. We tested 
AutoSwitch using transfer sizes of 10 KB, 100 KB, and 
1MB, as well as Wait-n-Migrate alone. We then measured 
the number of transfers that were fully completed without 
errors over two predetermined paths in Rice University, 
shown in Figure 16; 1) while walking commonly used 
paths, and 2) while in a car travelling at approximately 30 
km/h along campus roads. The walking path was approxi-
mately 1 km long, included indoor areas in two buildings, 
crossed distinct areas with good to excellent Wi-Fi connec-
tivity (-70 dBm signal strength or more), and was covered 
approximately 95% of the time by a Wi-Fi signal. The driv-
ing path was approximately 3 km long and only had one 
area of good Wi-Fi signal strength, but still had about 80% 
Wi-Fi coverage. Each test run lasted approximately one 
hour, and included over 1000 transfer attempts. 

The success rates of transfers, as observed by our 
script, are shown in Figure 17. As expected, due to Wi-Fi 
signal variations, there are a significant number of failed 
transfers without AutoSwitch. Using AutoSwitch in con-
junction with Wait-n-Migrate significantly reduced the 
number of disruptions. Furthermore, since the server sup-
ported resuming, Resumption Agent, used in conjunction 
with Wait-n-Migrate, was able to further reduce disrup-
tions, completely eliminating them while walking, and in-
creased the success rate while driving to over 95–99% for 
different file sizes.  

7. Discussion 
Our work focuses on providing system mechanisms for 

migrating flows between networks. Various policies have 
been proposed to switch between or aggregate networks. 
AutoSwitch is one such policy, and unambiguously demon-
strates the effectiveness of Wait-n-Migrate and Resumption 
Agent in supporting seamless flow migration. The system 
mechanisms we have presented here can also be utilized to 
enable the immediate deployment of many performance 
and efficiency-enhancing policies studied in the literature, 
without practical deployment issues:  

Multihoming / Load Balancing: When used for load 
balancing and multihoming, Resumption Agent has the key 
advantage of knowing the length of a flow at its very early 
stages, through the HTTP response headers, as well as the 
properties and conditions of the available networks. This 
allows Resumption Agent to intelligently allocate each 
flow on the appropriate network interface. 

Striping: Resumption Agent can support striping larger 
transfers, i.e. download different parts of the transfer simul-
taneously through different networks, as long as the content 
supports resuming. Resumption Agent can be extended to 
download separate chunks over each interface and then 
amalgamate these chunks before sending them to the client. 
For striping content that contains dynamic parts, as de-
scribed in Section 4.2.1, it is necessary to ensure the dy-
namic portions are downloaded in single chunks.  

Mirroring: For pages that do not support striping, or 
that are very small compared to the latency, Resumption 
Agent can be extended to simultaneously request the same 
page on multiple networks, and return whichever finishes 
first. While this method is not power-efficient, it can pro-
vide substantial reduction in user perceived latency, espe-
cially under highly varying network environments.  

Preemptive Network Switching: When Resumption 
Agent is aware of an impending network switch, it can es-
tablish a connection over the new network and request the 
remaining portion of the flow, before killing the existing 
flow. This allows the Resumption Agent to further mini-
mize the latency incurred when resuming a flow. 

8. Conclusion 
We presented a first-of-its-kind characterization of IP 

traffic on modern smartphones using traces collected in 
real-life usage of 27 iPhone 3GS users over a period of 
three months. We show that the traffic is almost exclusively 
TCP, and TCP flows are often short-lived and rarely con-
current for interactive applications.  

Driven by these findings, we devised two novel and 
complementary system mechanisms to migrate TCP flows 
between networks without network or application support: 
Wait-n-Migrate and Resumption Agent. While Wait-n-
Migrate significantly decreases, or even eliminates       
connectivity gaps when switching between networks,               



14 

Resumption Agent opportunistically resumes flows across 
connectivity disruptions and network switches. Combined, 
these two system mechanisms mitigate, and in many cases 
eliminate, the impact of widely varying network conditions 
on mobile applications, as we demonstrate using our im-
plementation, AutoSwitch.  The seamless flow migration 
without network support collectively enabled by Wait-n-
Migrate and Resumption Agent allows for immediate de-
ployment of performance and efficiency-enhancing poli-
cies, including multihoming and traffic offloading. 
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